Ionogels: recent advances in design, material properties and emerging biomedical applications.

Ionic liquid (IL)-based gels (ionogels) have received considerable attention due to their unique advantages in ionic conductivity and their biphasic liquid-solid phase property. In ionogels, the negligibly volatile ionic liquid is retained in the interconnected 3D pore structure. On the basis of these physical features as well as the chemical properties of well-chosen ILs, there is emerging interest in the anti-bacterial and biocompatibility aspects. In this review, the recent achievements of ionogels for biomedical applications are summarized and discussed. Following a brief introduction of the various types of ILs and their key physicochemical and biological properties, the design strategies and fabrication methods of ionogels are presented by means of different confining networks. These sophisticated ionogels with diverse functions, aimed at biomedical applications, are further classified into several active domains, including wearable strain sensors, therapeutic delivery systems, wound healing and biochemical detections. Finally, the challenges and possible strategies for the design of future ionogels by integrating materials science with a biological interface are proposed.

[1]  Ting Shu,et al.  Cytochrome P450 2D6 biosensor for perphenazine based on multi-walled carbon nanotube/ionic liquid and tetrathiafulvalene-tetracyanoquinodimethane salt/ionic liquid gels , 2022, Electrochimica Acta.

[2]  Wei Lin Leong,et al.  High Performing Solid‐State Organic Electrochemical Transistors Enabled by Glycolated Polythiophene and Ion‐Gel Electrolyte with a Wide Operation Temperature Range from −50 to 110 °C , 2022, Advanced Functional Materials.

[3]  V. Bocharova,et al.  Task-Specific Phosphonium Iongels by Fast UV-Photopolymerization for Solid-State Sodium Metal Batteries , 2022, Gels.

[4]  N. M. Mubarak,et al.  The Role of Interfaces in Ionic Liquid‐Based Hybrid Materials (Ionogels) for Sensing and Energy Applications , 2022, Advanced Materials Interfaces.

[5]  C. Leighton,et al.  Voltage Control of Patterned Metal/Insulator Properties in Oxide/Oxyfluoride Lateral Perovskite Heterostructures via Ion Gel Gating , 2022, Advanced Functional Materials.

[6]  E. Kamio,et al.  Fundamental investigation on the development of composite membrane with a thin ion gel layer for CO2 separation , 2022, Journal of Membrane Science.

[7]  K. S. Egorova,et al.  Biological activity, solvation properties and microstructuring of protic imidazolium ionic liquids , 2022, Journal of Molecular Liquids.

[8]  Y. Miao,et al.  Mechanically robust, stretchable, recyclable, and biodegradable ionogels reinforced by polylactide stereocomplex nanocrystals , 2022, Composites Science and Technology.

[9]  Walaa F. Alsanie,et al.  Ionic Liquid‐Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future , 2022, Advanced science.

[10]  T. Welton,et al.  Synthesis of aprotic ionic liquids , 2022, Nature Reviews Methods Primers.

[11]  Qinfeng Rong,et al.  Shape and stiffness memory ionogels with programmable pressure-resistance response , 2022, Nature Communications.

[12]  Woo Jin Hyun,et al.  Blade-Coatable Hexagonal Boron Nitride Ionogel Electrolytes for Scalable Production of Lithium Metal Batteries , 2022, ACS Energy Letters.

[13]  P. Théato,et al.  Ionogels as Polymer Electrolytes for Lithium–Metal Batteries: Comparison of Poly(ethylene glycol) Diacrylate and an Imidazolium-Based Ionic Liquid Crosslinker , 2022, ACS Applied Polymer Materials.

[14]  Q. Lu,et al.  Multifunctional Flexible Sensors Based on Ionogel Composed Entirely of Ionic Liquid with Long Alkyl Chains for Enhancing Mechanical Properties , 2022, Chemical Engineering Journal.

[15]  Sang-Joon Park,et al.  Wearable nitrogen oxide gas sensors based on hydrophobic polymerized ionogels for the detection of biomarkers in exhaled breath , 2022, Sensors and Actuators B: Chemical.

[16]  M. Dickey,et al.  Tough and stretchable ionogels by in situ phase separation , 2022, Nature Materials.

[17]  D. Mecerreyes,et al.  Ionic liquid/poly(ionic liquid) membranes as non-flowing, conductive materials for electrochemical gas sensing. , 2021, Analytica chimica acta.

[18]  Jian Sun,et al.  Roles of Ionic Liquids in Adjusting Nature of Ionogels: A Mini Review , 2022 .

[19]  Yutian Zhu,et al.  Flexible and Transparent Pressure/Temperature Sensors Based on Ionogels with Bioinspired Interlocked Microstructures. , 2021, ACS applied materials & interfaces.

[20]  Shuai Hao,et al.  Ultrastretchable, Adhesive, Fast Self-Healable, and Three-Dimensional Printable Photoluminescent Ionic Skin Based on Hybrid Network Ionogels. , 2021, ACS applied materials & interfaces.

[21]  Kumkum Ahmed,et al.  Ionic Liquid-Based Gels for Applications in Electrochemical Energy Storage and Conversion Devices: A Review of Recent Progress and Future Prospects , 2021, Gels.

[22]  Jianxin Zhang,et al.  3D Printable, Ultra-stretchable, Self-healable, and Self-adhesive Dual Cross-linked Nanocomposite Ionogels as Ultra-Durable Strain Sensors for Motion Detection and Wearable Human-machine Interface , 2021, Chemical Engineering Journal.

[23]  X. Sui,et al.  Nonvolatile, stretchable and adhesive ionogel fiber sensor designed for extreme environments , 2021, Chemical Engineering Journal.

[24]  F. Rodríguez,et al.  Cellulose ionogels, a perspective of the last decade: A review. , 2021, Carbohydrate polymers.

[25]  X. Sui,et al.  Flexible and Robust Bacterial Cellulose‐Based Ionogels with High Thermoelectric Properties for Low‐Grade Heat Harvesting , 2021, Advanced Functional Materials.

[26]  Xihua Cui,et al.  Breathable Strain/Temperature Sensor Based on Fibrous Networks of Ionogels Capable of Monitoring Human Motion, Respiration, and Proximity. , 2021, ACS applied materials & interfaces.

[27]  T. Sun,et al.  A Transparent, Highly Stretchable, Solvent‐Resistant, Recyclable Multifunctional Ionogel with Underwater Self‐Healing and Adhesion for Reliable Strain Sensors , 2021, Advanced materials.

[28]  Tianxi Liu,et al.  Highly Stretchable, Fast Self-Healing, and Waterproof Fluorinated Copolymer Ionogels with Selectively Enriched Ionic Liquids for Human-Motion Detection. , 2021, ACS applied materials & interfaces.

[29]  Yang Li,et al.  Mechanically and Environmentally Stable Triboelectric Nanogenerator Based on High-Strength and Anti-Compression Self-Healing Ionogel , 2021, Nano Energy.

[30]  K. Fatyeyeva,et al.  Imidazolium-based protic ionic liquids with perfluorinated anions: influence of chemical structure on thermal properties , 2021, Journal of Molecular Liquids.

[31]  Hua Li,et al.  Stretchable strain and temperature sensor based on fibrous polyurethane film saturated with ionic liquid , 2021 .

[32]  Peiyi Wu,et al.  Water‐Resistant Ionogel Electrode with Tailorable Mechanical Properties for Aquatic Ambulatory Physiological Signal Monitoring , 2021, Advanced Functional Materials.

[33]  Xiaodong Chen,et al.  Bioinspired Photonic Ionogels as Interactively Visual Ionic Skin with Optical and Electrical Synergy. , 2021, Small.

[34]  Yapei Wang,et al.  Dynamic chemistry in ionic liquid-based conductor , 2021, Green Chemical Engineering.

[35]  A. Roque,et al.  Ionogels Based on a Single Ionic Liquid for Electronic Nose Application , 2021, Chemosensors.

[36]  Yang Shu,et al.  Research progress of Ionic liquids-based gels in energy storage, sensors and antibacterial , 2021, Green Chemical Engineering.

[37]  V. Mattoli,et al.  Antimicrobial Ionic Liquid‐Based Materials for Biomedical Applications , 2021, Advanced Functional Materials.

[38]  Hu Wu,et al.  Highly Conductive Organic-ionogels with Excellent Hydrophobicity and Flame Resistance , 2021 .

[39]  D. Mecerreyes,et al.  3D Printable and Biocompatible Iongels for Body Sensor Applications , 2021, Advanced Electronic Materials.

[40]  Xiulin Fan,et al.  Ambiently and Mechanically Stable Ionogels for Soft Ionotronics , 2021, Advanced Functional Materials.

[41]  Myungwoong Kim,et al.  Block Copolymer‐Based Supramolecular Ionogels for Accurate On‐Skin Motion Monitoring , 2021, Advanced Functional Materials.

[42]  Ziqi Zeng,et al.  Ultrathin polymer electrolyte film prepared by in-situ polymerization for lithium metal batteries , 2021 .

[43]  J. Jacquemin,et al.  Cytotoxicity of Ionic Liquids on Normal Human Dermal Fibroblasts in the Context of Their Present and Future Applications , 2021 .

[44]  Tamao Saito,et al.  Simple and Fast One-Pot Cellulose Gel Preparation in Aqueous Pyrrolidinium Hydroxide Solution–Cellulose Solvent and Antibacterial Agent , 2021, Polymers.

[45]  A. Tripathi Ionic liquid–based solid electrolytes (ionogels) for application in rechargeable lithium battery , 2021 .

[46]  M. Guo,et al.  Highly Transparent, Stretchable, and Conductive Supramolecular Ionogels Integrated with Three-Dimensional Printable, Adhesive, Healable, and Recyclable Character. , 2021, ACS applied materials & interfaces.

[47]  P. Milani,et al.  All‐Printed Green Micro‐Supercapacitors Based on a Natural‐derived Ionic Liquid for Flexible Transient Electronics , 2021, Advanced Functional Materials.

[48]  Yifei Li,et al.  Self-healable metal-organic gel membranes as anodes with high lithium storage , 2021 .

[49]  Andrew J Boydston,et al.  Mechanoactivation of Color and Autonomous Shape Change in 3D-Printed Ionic Polymer Networks. , 2021, ACS applied materials & interfaces.

[50]  Qihang Lin,et al.  Wearable human-machine interface based on the self-healing strain sensors array for control interface of unmanned aerial vehicle , 2021 .

[51]  Tianxi Liu,et al.  Highly Stretchable and Reconfigurable Ionogels with Unprecedented Thermoplasticity and Ultrafast Self-Healability Enabled by Gradient-Responsive Networks , 2021 .

[52]  Shengtong Sun,et al.  Adaptive Ionogel Paint from Room‐Temperature Autonomous Polymerization of α‐Thioctic Acid for Stretchable and Healable Electronics , 2021, Advanced Functional Materials.

[53]  Jiangna Guo,et al.  Poly(ionic liquid)/Ce‐Based Antimicrobial Nanofibrous Membrane for Blocking Drug‐Resistance Dissemination from MRSA‐Infected Wounds , 2021, Advanced Functional Materials.

[54]  Shuai Tan,et al.  In Situ Polymerized Protic Ionogels for Fuel Cells at Elevated Temperatures , 2021 .

[55]  Zhenmin Cheng,et al.  Thermal Stability of Ionic Liquids: Current Status and Prospects for Future Development , 2021, Processes.

[56]  Yongyuan Ren,et al.  Electric‐Field‐Induced Gradient Ionogels for Highly Sensitive, Broad‐Range‐Response, and Freeze/Heat‐Resistant Ionic Fingers , 2021, Advanced materials.

[57]  Jianxin Zhang,et al.  3D Printable, Highly Stretchable, Superior Stable Ionogels Based on Poly(ionic liquid) with Hyperbranched Polymers as Macro-cross-linkers for High-Performance Strain Sensors. , 2021, ACS applied materials & interfaces.

[58]  Tianxi Liu,et al.  Thermo-Spun Reaction Encapsulation Fabrication of Environment-Stable and Knittable Fibrous Ionic Conductors with Large Elasticity and High Fatigue Resistance , 2021, Social Science Research Network.

[59]  Yutian Zhu,et al.  Flexible, transparent, and antibacterial ionogels toward highly sensitive strain and temperature sensors , 2021 .

[60]  Zong-liang Du,et al.  Self-healing, anti-freezing and highly stretchable polyurethane ionogel as ionic skin for wireless strain sensing , 2021 .

[61]  Yang Li,et al.  Polymeric Complex-Based Transparent and Healable Ionogels with High Mechanical Strength and Ionic Conductivity as Reliable Strain Sensors. , 2020, ACS applied materials & interfaces.

[62]  J. Bara,et al.  Dual Anion–Cation Crosslinked Poly(ionic liquid) Composite Membranes for Enhanced CO2 Separation , 2020 .

[63]  F. Stadler,et al.  Fabrication of Highly Robust and Conductive Ion Gels Based on the Combined Strategies of Double-Network, Composite, and High-Functionality Cross-Linkers. , 2020, ACS applied materials & interfaces.

[64]  E. Cabrita,et al.  Revisiting Ionic Liquid Structure-Property Relationship: A Critical Analysis , 2020, International journal of molecular sciences.

[65]  Kang‐Da Zhang,et al.  Ionic Liquid‐Based Stimuli‐Responsive Functional Materials , 2020, Advanced Functional Materials.

[66]  S. Mitragotri,et al.  Mucoadhesive Ionic Liquid Gel Patches for Oral Delivery. , 2020, ACS biomaterials science & engineering.

[67]  Xiaoping Zhang Determination of Tyrosine in Artificial Urine Using a Screen- Printed Electrode Modified with tetrathiafulvalene−tetracyanoquinodimethane/ionic Liquid Conductive Gel , 2020 .

[68]  O. E. El Seoud,et al.  Temperature‐Responsive Low Molecular Weight Ionic Liquid Based Gelator: An Approach to Fabricate an Anti‐Cancer Drug‐Loaded Hybrid Ionogel , 2020 .

[69]  Woo Jin Hyun,et al.  Nanocomposite Ionogel Electrolytes for Solid‐State Rechargeable Batteries , 2020, Advanced Energy Materials.

[70]  Tong Zhang,et al.  In Situ Preparation of Porous Humidity Sensitive Composite via a One-Stone-Two-Birds Strategy , 2020 .

[71]  R. Ran,et al.  A Transparent Stretchable Dual-Network Ionogel with Temperature Tolerance for High-Performance Flexible Strain Sensor. , 2020, ACS applied materials & interfaces.

[72]  Yifan Gu,et al.  Self-healable and stretchable ionogels serve as electrolytes and substrates for integrated all-in-one micro-supercapacitors , 2020 .

[73]  Zhanhu Guo,et al.  Overview of Ionogels in Flexible Electronics , 2020, Chemical record.

[74]  Panpan Li,et al.  Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. , 2020, Chemical reviews.

[75]  Tianqi Li,et al.  Mechanically Robust, Elastic, and Healable Ionogels for Highly Sensitive Ultra‐Durable Ionic Skins , 2020, Advanced materials.

[76]  T. Brousse,et al.  Reflow Soldering-Resistant Solid-State 3D Micro-Supercapacitors Based on Ionogel Electrolyte for Powering the Internet of Things , 2020 .

[77]  Longhua Guo,et al.  Electrochemical determination of rutin based on molecularly imprinted poly (ionic liquid) with ionic liquid-graphene as a sensitive element , 2020, Sensors and Actuators B: Chemical.

[78]  Jianxin Zhang,et al.  Novel chemically cross-linked chitosan-cellulose based ionogel with self-healability, high ionic conductivity, and high thermo-mechanical stability , 2020, Cellulose.

[79]  S. Lanceros‐Méndez,et al.  Ionic Liquid–Polymer Composites: A New Platform for Multifunctional Applications , 2020, Advanced Functional Materials.

[80]  A. Shayanfar,et al.  Design and characterization of ascorbic acid based therapeutic deep eutectic solvent as a new ion-gel for delivery of sunitinib malate , 2020 .

[81]  Jun Nie,et al.  Robust Physically Linked Double-Network Ionogel as Flexible Bimodal Sensor. , 2020, ACS applied materials & interfaces.

[82]  Liangbing Hu,et al.  A Dynamic Gel with Reversible and Tunable Topological Networks and Performances , 2020 .

[83]  F. Rodríguez,et al.  Chitosan-reinforced cellulosic bionogels: Viscoelastic and antibacterial properties. , 2020, Carbohydrate polymers.

[84]  Sandip K. Singh,et al.  Ionic liquids synthesis and applications: An overview , 2020 .

[85]  H. Moon,et al.  Ionoskins: Nonvolatile, Highly Transparent, Ultrastretchable Ionic Sensory Platforms for Wearable Electronics , 2019, Advanced Functional Materials.

[86]  M. Watanabe,et al.  Transport and Mechanical Properties of ABA-type Triblock Copolymer Ion Gels Correlated with Their Microstructures , 2019, Macromolecules.

[87]  P. Licence,et al.  In vitro cytotoxicity assessment of monocationic and dicationic pyridinium-based ionic liquids on HeLa, MCF-7, BGM and EA.hy926 cell lines. , 2019, Journal of hazardous materials.

[88]  F. Koç,et al.  Revealing the pore characteristics and physicochemical properties of silica ionogels based on different sol-gel drying strategies , 2019, Journal of Solid State Chemistry.

[89]  M. Watanabe,et al.  Effect of ionic liquid structure on viscoelastic behavior of hydrogen-bonded micellar ion gels , 2019, Polymer.

[90]  H. Butt,et al.  Responsive Ionogel Surface with Renewable Antibiofouling Properties. , 2019, Macromolecular rapid communications.

[91]  Vipin Amoli,et al.  A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin , 2019, Nature Communications.

[92]  Lijie Sun,et al.  Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range , 2019, Nano Energy.

[93]  Jiangna Guo,et al.  Antibacterial Amino Acid-Based Poly(ionic liquid) Membranes: Effects of Chirality, Chemical Bonding Type, and Application for MRSA Skin Infections. , 2019, ACS applied bio materials.

[94]  Corie Lynn Cobb,et al.  3D Printing Ionogel Auxetic Frameworks for Stretchable Sensors , 2019, Advanced Materials Technologies.

[95]  Yongyuan Ren,et al.  Ionic liquid–based click-ionogels , 2019, Science Advances.

[96]  Keun Hyung Lee,et al.  Low voltage, high gain electrolyte-gated complementary inverters based on transfer-printed block copolymer ion gels , 2019, Organic Electronics.

[97]  Peiyi Wu,et al.  A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation , 2019, Nature Communications.

[98]  Kyu‐Young Park,et al.  High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries. , 2019, ACS nano.

[99]  F. Rodríguez,et al.  Viscoelastic properties of physical cellulosic bionogels of cholinium lysinate. , 2019, International journal of biological macromolecules.

[100]  Yang Li,et al.  Healable, Highly Conductive, Flexible, and Nonflammable Supramolecular Ionogel Electrolytes for Lithium-Ion Batteries. , 2019, ACS applied materials & interfaces.

[101]  Z. Suo,et al.  Self-Healing, Adhesive, and Highly Stretchable Ionogel as a Strain Sensor for Extremely Large Deformation. , 2019, Small.

[102]  Arvind Kumar,et al.  Ionic Liquid Assisted Gelatin Films: Green, UV Shielding, Antioxidant, and Antibacterial Food Packaging Materials , 2019, ACS Sustainable Chemistry & Engineering.

[103]  Y. Liu,et al.  Ionic liquid–activated wearable electronics , 2019, Materials Today Physics.

[104]  Qihang Lin,et al.  Facile Fabrication of a Self-Healing Temperature-Sensitive Sensor Based on Ionogels and Its Application in Detection Human Breath , 2019, Nanomaterials.

[105]  Xiaolin Xie,et al.  UV-curable boron nitride nanosheet/ionic liquid-based crosslinked composite polymer electrolyte in lithium metal batteries , 2019, Journal of Power Sources.

[106]  Xiao Chen,et al.  Luminescent Sodium Deoxycholate Ionogel Induced by Eu3+ in Ethylammonium Nitrate , 2019, ACS omega.

[107]  Bao Zhang,et al.  Multifunctional Self-Healing Ionogels from Supramolecular Assembly: Smart Conductive and Remarkable Lubricating Materials. , 2018, ACS applied materials & interfaces.

[108]  Naofumi Naga,et al.  Extremely Soft, Conductive, and Transparent Ionic Gels by 3D Optical Printing , 2018, Macromolecular Chemistry and Physics.

[109]  T. Long,et al.  Advances in phosphonium-based ionic liquids and poly(ionic liquid)s as conductive materials , 2018, European Polymer Journal.

[110]  Keun Hyung Lee,et al.  Sub-2 V, Transfer-Stamped Organic/Inorganic Complementary Inverters Based on Electrolyte-Gated Transistors. , 2018, ACS applied materials & interfaces.

[111]  H. Sardón,et al.  Biodegradable Polycarbonate Iongels for Electrophysiology Measurements , 2018, Polymers.

[112]  M. Fernández-García,et al.  Poly(ionic liquid)s as antimicrobial materials , 2018, European Polymer Journal.

[113]  Hong Wang,et al.  Ionic Skin with Biomimetic Dielectric Layer Templated from Calathea Zebrine Leaf , 2018, Advanced Functional Materials.

[114]  J. Bideau Photo-Polymerized Organic Host Network of Ionogels for Lithium Batteries: Effects of Mesh Size and of Ethylene Oxide Content , 2018, ECS Transactions.

[115]  T. Welton Ionic liquids: a brief history , 2018, Biophysical Reviews.

[116]  D. Mecerreyes,et al.  Mixing poly(ionic liquid)s and ionic liquids with different cyano anions: Membrane forming ability and CO2/N2 separation properties , 2018 .

[117]  Renjie Chen,et al.  Ionogel Electrolytes for High‐Performance Lithium Batteries: A Review , 2018 .

[118]  X. Yang,et al.  Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids , 2018, Front. Chem..

[119]  I. Marrucho,et al.  Effect of polymer molecular weight on the physical properties and CO2/N2 separation of pyrrolidinium-based poly(ionic liquid) membranes , 2018 .

[120]  Dermot Diamond,et al.  Reusable ionogel-based photo-actuators in a lab-on-a-disc , 2018 .

[121]  J. Pyrhönen,et al.  Natural cellulose ionogels for soft artificial muscles. , 2018, Colloids and surfaces. B, Biointerfaces.

[122]  Lei Jiang,et al.  Preparation of High‐Performance Ionogels with Excellent Transparency, Good Mechanical Strength, and High Conductivity , 2017, Advanced materials.

[123]  Panpan Sun,et al.  Low-Molecular-Weight Supramolecular Ionogel Based on Host-Guest Interaction. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[124]  Moon-Sung Kang,et al.  Area-Controllable Stamping of Semicrystalline Copolymer Ionogels for Solid-State Electrolyte-Gated Transistors and Light-Emitting Devices. , 2017, ACS applied materials & interfaces.

[125]  B. Dunn,et al.  Patternable, Solution-Processed Ionogels for Thin-Film Lithium-Ion Electrolytes , 2017 .

[126]  Deborah K. Schneiderman,et al.  Printable, Degradable, and Biocompatible Ion Gels from a Renewable ABA Triblock Polyester and a Low Toxicity Ionic Liquid. , 2017, ACS macro letters.

[127]  Yu Zhu,et al.  Syndiotactic Polystyrene-Based Ionogel Membranes for High Temperature Electrochemical Applications. , 2017, ACS applied materials & interfaces.

[128]  J. Gębicki,et al.  Prospects of ionic liquids application in electronic and bioelectronic nose instruments , 2017 .

[129]  P. Sharma,et al.  Gelatin-Based Highly Stretchable, Self-Healing, Conducting, Multiadhesive, and Antimicrobial Ionogels Embedded with Ag2O Nanoparticles , 2017 .

[130]  Cheng Zhang,et al.  The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio). , 2017, Ecotoxicology and environmental safety.

[131]  Ali Khademhosseini,et al.  Advances in engineering hydrogels , 2017, Science.

[132]  C. Hou,et al.  Enzyme-Regulated Fast Self-Healing of a Pillararene-Based Hydrogel. , 2017, Biomacromolecules.

[133]  F. Yan,et al.  Zinc Ion Coordinated Poly(Ionic Liquid) Antimicrobial Membranes for Wound Healing. , 2017, ACS applied materials & interfaces.

[134]  Holly A Yu,et al.  Detection of 2,4,6-Trinitrotoluene Using a Miniaturized, Disposable Electrochemical Sensor with an Ionic Liquid Gel-Polymer Electrolyte Film. , 2017, Analytical chemistry.

[135]  George G. Malliaras,et al.  Fully Printed Electrodes on Stretchable Textiles for Long‐Term Electrophysiology , 2017 .

[136]  Xingguo Qi,et al.  In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries , 2017 .

[137]  R. Vekariya A review of ionic liquids: Applications towards catalytic organic transformations , 2017 .

[138]  P. Solanki,et al.  Self-healing gelatin ionogels. , 2017, International journal of biological macromolecules.

[139]  K. S. Egorova,et al.  Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. , 2017, Chemical reviews.

[140]  Feng Wu,et al.  Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries , 2017 .

[141]  Fernando Benito-Lopez,et al.  Fluidic flow delay by ionogel passive pumps in microfluidic paper-based analytical devices , 2016 .

[142]  T. Lodge,et al.  Mechanically Tunable, Readily Processable Ion Gels by Self-Assembly of Block Copolymers in Ionic Liquids. , 2016, Accounts of chemical research.

[143]  M. El-Harbawi,et al.  Understanding the physical properties, toxicities and anti-microbial activities of choline-amino acid-based salts: Low-toxic variants of ionic liquids , 2016 .

[144]  A. Borkowski,et al.  Different antibacterial activity of novel theophylline-based ionic liquids - Growth kinetic and cytotoxicity studies. , 2016, Ecotoxicology and environmental safety.

[145]  Alistair W. T. King,et al.  Effect of Ionic Liquids on Zebrafish (Danio rerio) Viability, Behavior, and Histology; Correlation between Toxicity and Ionic Liquid Aggregation. , 2016, Environmental science & technology.

[146]  Jing Wang,et al.  Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life. , 2016, Nano letters.

[147]  B. Scrosati,et al.  Ionic-Liquid-Based Polymer Electrolytes for Battery Applications. , 2016, Angewandte Chemie.

[148]  Feng Wu,et al.  Self‐Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery , 2015, Advanced science.

[149]  R. Maboudian,et al.  Comparative studies on electrochemical cycling behavior of two different silica-based ionogels , 2016 .

[150]  Vitor L. Martins,et al.  Ionic Liquids Containing Sulfonium Cations as Electrolytes for Electrochemical Double Layer Capacitors , 2015 .

[151]  C. Drummond,et al.  Protic Ionic Liquids: Evolving Structure-Property Relationships and Expanding Applications. , 2015, Chemical reviews.

[152]  A. Valero,et al.  Biomolecule storage on non-modified thermoplastic microfluidic chip by ink-jet printing of ionogels. , 2015, Biomicrofluidics.

[153]  V. Smrečki,et al.  Supramolecular Ionic-Liquid Gels with High Ionic Conductivity. , 2015, Chemistry.

[154]  Dominique Guyomard,et al.  Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries , 2015 .

[155]  B. Gilmore,et al.  The antimicrobial potential of ionic liquids: A source of chemical diversity for infection and biofilm control. , 2015, International journal of antimicrobial agents.

[156]  Federica Valentini,et al.  Graphene and ionic liquids new gel paste electrodes for caffeic acid quantification , 2015 .

[157]  A. Taubert Electrospinning of Ionogels: Current Status and Future Perspectives , 2015 .

[158]  Youngsik Kim,et al.  Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries. , 2015, ChemSusChem.

[159]  R. Ratti Ionic Liquids: Synthesis and Applications in Catalysis , 2014 .

[160]  P. Soudan,et al.  Hybrid Silica–Polymer Ionogel Solid Electrolyte with Tunable Properties , 2014 .

[161]  Tiancheng Mu,et al.  Comprehensive Investigation on the Thermal Stability of 66 Ionic Liquids by Thermogravimetric Analysis , 2014 .

[162]  Hengchong Shi,et al.  Thickness-Dependent Full-Color Emission Tunability in a Flexible Carbon Dot Ionogel. , 2014, The journal of physical chemistry letters.

[163]  Mehmet Isik,et al.  Cholinium-Based Poly(ionic liquid)s: Synthesis, Characterization, and Application as Biocompatible Ion Gels and Cellulose Coatings. , 2013, ACS macro letters.

[164]  S. Stolte,et al.  (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. , 2013, Journal of hazardous materials.

[165]  Nicholas Gathergood,et al.  A new generation of aprotic yet Brønsted acidic imidazolium salts: effect of ester/amide groups in the C-2, C-4 and C-5 on antimicrobial toxicity and biodegradation , 2013 .

[166]  S. Passerini,et al.  Polymerizable ionic liquid with state of the art transport properties. , 2013, The journal of physical chemistry. B.

[167]  D. Mecerreyes,et al.  Polymeric ionic liquids with mixtures of counter-anions: a new straightforward strategy for designing pyrrolidinium-based CO2 separation membranes , 2013 .

[168]  M. Courty,et al.  Biomass derived ionic liquids: synthesis from natural organic acids, characterization, toxicity, biodegradation and use as solvents for catalytic hydrogenation processes , 2013 .

[169]  M. Antonietti,et al.  Poly(ionic liquid)s: An update , 2013 .

[170]  X. Hou,et al.  Evaluation of Toxicity and Biodegradability of Cholinium Amino Acids Ionic Liquids , 2013, PloS one.

[171]  Chul-Woong Cho,et al.  Synthesis, Toxicity, and Biodegradation of Tunable Aryl Alkyl Ionic Liquids (TAAILs) , 2013 .

[172]  D. Macfarlane,et al.  Ionogels based on ionic liquids as potential highly conductive solid state electrolytes , 2013 .

[173]  S. Stolte,et al.  Ionic liquids as lubricants or lubrication additives: an ecotoxicity and biodegradability assessment. , 2012, Chemosphere.

[174]  P. Izák,et al.  Gas transport properties of Pebax®/room temperature ionic liquid gel membranes , 2012 .

[175]  L. Archer,et al.  Ionic Liquid‐Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium‐Metal Batteries , 2012, Advanced materials.

[176]  T. Loh,et al.  Application of recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective Diels–Alder reactions , 2012 .

[177]  M. Panzer,et al.  High-performance, mechanically compliant silica-based ionogels for electrical energy storage applications , 2012 .

[178]  Colin Hong An Wong,et al.  Synthesis and application of a recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective 1,3-dipolar cycloaddition. , 2012, Chemical communications.

[179]  N. Gathergood,et al.  Antimicrobial toxicity studies of ionic liquids leading to a ‘hit’ MRSA selective antibacterial imidazolium salt , 2012 .

[180]  M. Kumke,et al.  A transparent, flexible, ion conductive, and luminescent PMMA ionogel based on a Pt/Eu bimetallic complex and the ionic liquid [Bmim][N(Tf)2] , 2012 .

[181]  Lynden A. Archer,et al.  Ionic liquid-nanoparticle hybrid electrolytes , 2012 .

[182]  N. Muhammad,et al.  Thermophysical Properties of Dual Functionalized Imidazolium-Based Ionic Liquids , 2012 .

[183]  P. Soudan,et al.  Solid‐State Electrode Materials with Ionic‐Liquid Properties for Energy Storage: the Lithium Solid‐State Ionic‐Liquid Concept. , 2011 .

[184]  Pei Li,et al.  CO2 Separation from Flue Gas Using Polyvinyl-(Room Temperature Ionic Liquid)–Room Temperature Ionic Liquid Composite Membranes , 2011 .

[185]  Ulrich S Schubert,et al.  A practical approach to the development of inkjet printable functional ionogels-bendable, foldable, transparent, and conductive electrode materials. , 2010, Macromolecular rapid communications.

[186]  T. Loh,et al.  Enantioselective Carbonyl‐Ene Reactions of Trifluoropyruvate in Ionic Liquid via a Recyclable Indium(III)‐Pybox Complex , 2010 .

[187]  R. Singer,et al.  Further studies on the biodegradation of ionic liquids , 2010 .

[188]  J. Bideau,et al.  Use of ionic liquids in sol-gel; ionogels and applications , 2010 .

[189]  H. Gunaratne,et al.  Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability , 2010 .

[190]  F. Srienc,et al.  Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis , 2010, Biotechnology and bioprocess engineering : BBE.

[191]  N. Gathergood,et al.  Biodegradation studies of ionic liquids. , 2010, Chemical Society reviews.

[192]  Mohd Tariq,et al.  Volatility of Aprotic Ionic Liquids — A Review , 2010 .

[193]  J. Wishart,et al.  Energy applications of ionic liquids , 2009 .

[194]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[195]  C. Lagrost,et al.  Electrochemical reactivity in room-temperature ionic liquids. , 2008, Chemical reviews.

[196]  T. Loh,et al.  One-pot chemoenzymatic syntheses of enantiomerically-enriched O-acetyl cyanohydrins from aldehydes in ionic liquid , 2008 .

[197]  A. Rodríguez,et al.  Toxicity and biodegradability of imidazolium ionic liquids. , 2008, Journal of hazardous materials.

[198]  H. Ohno,et al.  Amino acid ionic liquids. , 2007, Accounts of chemical research.

[199]  J. Le Bideau,et al.  Effect of confinement on ionic liquids dynamics in monolithic silica ionogels: 1H NMR study. , 2007, Physical chemistry chemical physics : PCCP.

[200]  L. M. Varela,et al.  Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids , 2007 .

[201]  U. Kragl,et al.  Do we understand the volatility of ionic liquids? , 2007, Angewandte Chemie.

[202]  Elizabeth Sommer,et al.  Designing small molecules for biodegradability. , 2007, Chemical reviews.

[203]  L. Lay,et al.  Glucose-derived ionic liquids: exploring low-cost sources for novel chiral solvents , 2007 .

[204]  T. Loh,et al.  Catalytic enantioselective Diels-Alder reaction in ionic liquid via a recyclable chiral In(III) complex. , 2006, Organic letters.

[205]  K. Driesen,et al.  Luminescent Ionogels Based on Europium-Doped Ionic Liquids Confined within Silica-Derived Networks , 2006 .

[206]  D. Macfarlane,et al.  Thermal degradation of cyano containing ionic liquids , 2006 .

[207]  Jean Le Bideau,et al.  Ionogels, New Materials Arising from the Confinement of Ionic Liquids within Silica-Derived Networks , 2006 .

[208]  R. Ludwig,et al.  The association of water in ionic liquids: a reliable measure of polarity. , 2006, Angewandte Chemie.

[209]  P. Scammells,et al.  Biodegradable ionic liquids : Part III. The first readily biodegradable ionic liquids , 2006 .

[210]  H. Ohno,et al.  Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives , 2005 .

[211]  T. Loh,et al.  Asymmetric allyltributylstannane addition to ketones catalyzed by chiral PYBOX–In(III) complex immobilized in ionic liquid , 2005 .

[212]  E. Castner,et al.  Physical properties and intermolecular dynamics of an ionic liquid compared with its isoelectronic neutral binary solution. , 2005, The journal of physical chemistry. A.

[213]  T. Loh,et al.  Catalytic Enantioselective Allylation of Aldehydes via a Chiral Indium(III) Complex in Ionic Liquids. , 2005 .

[214]  T. Loh,et al.  Enantioselective allylation of aldehydes catalyzed by chiral indium(III) complexes immobilized in ionic liquids. , 2005, Chemical communications.

[215]  T. Loh,et al.  Ionic liquid [omim][PF6] as an efficient and recyclable reaction media for the cyanosilylation of aldehydes without Lewis acid or any special activation , 2005 .

[216]  Charles F. Kulpa,et al.  Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids , 2005 .

[217]  Masayoshi Watanabe,et al.  Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. , 2005, Journal of the American Chemical Society.

[218]  Edgar Dutra Zanotto,et al.  Pressure dependence of viscosity. , 2005, The Journal of chemical physics.

[219]  Masahiro Yoshizawa,et al.  Room temperature ionic liquids from 20 natural amino acids. , 2005, Journal of the American Chemical Society.

[220]  Randall J. Bernot,et al.  Acute and chronic toxicity of imidazolium‐based ionic liquids on Daphnia magna , 2005, Environmental toxicology and chemistry.

[221]  James H. Davis Task-Specific Ionic Liquids , 2004 .

[222]  Joan F. Brennecke,et al.  Thermophysical Properties of Imidazolium-Based Ionic Liquids , 2004 .

[223]  T. Loh,et al.  Facile Ionic Liquids-Promoted One-Pot Synthesis of Polyhydroquinoline Derivatives under Solvent Free Conditions , 2004 .

[224]  T. Loh,et al.  Efficient FeIII‐Catalyzed Synthesis of Bis(indolyl)methanes in Ionic Liquids , 2004 .

[225]  T. Loh,et al.  Mukaiyama aldol reaction using ketene silyl acetals with carbonyl compounds in ionic liquids , 2004 .

[226]  T. Loh,et al.  Efficient synthesis of bis(indolyl)methanes catalyzed by Lewis acids in ionic liquids , 2003 .

[227]  Nobuo Kimizuka and,et al.  Spontaneous Self-Assembly of Glycolipid Bilayer Membranes in Sugar-philic Ionic Liquids and Formation of Ionogels , 2001 .

[228]  S. Pennycook,et al.  Preparation of silica aerogel using ionic liquids as solvents , 2000 .

[229]  T. Welton Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. , 1999, Chemical reviews.

[230]  Michael J. Zaworotko,et al.  Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids , 1992 .