Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate Li14SiP6.
暂无分享,去创建一个
Volker L. Deringer | H. Gasteiger | L. van Wüllen | A. Senyshyn | T. Fässler | V. Baran | H. Kirchhain | Christian Sedlmeier | W. Klein | G. Raudaschl‐Sieber | D. Müller | Henrik Eickhoff | Stefan Strangmüller
[1] Enhanced Li-ion dynamics in trivalently doped lithium phosphidosilicate Li2SiP2: a candidate material as a solid Li electrolyte , 2019, Journal of Materials Chemistry A.
[2] C. Dietrich,et al. Lithium Phosphidogermanates α- and β-Li8GeP4—A Novel Compound Class with Mixed Li+ Ionic and Electronic Conductivity , 2018, Chemistry of Materials.
[3] O. Dolotko,et al. Thermal Structural Behavior of Electrodes in Li-Ion Battery Studied In Operando , 2018 .
[4] N. Kireeva,et al. Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches. , 2017, Physical chemistry chemical physics : PCCP.
[5] J. Janek,et al. Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). , 2017, Journal of the American Chemical Society.
[6] T. Fässler,et al. Synthesis and Characterization of the Lithium-Rich Phosphidosilicates Li10Si2P6 and Li3Si3P7. , 2017, Inorganic chemistry.
[7] M. Islam,et al. Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect. , 2017, ACS applied materials & interfaces.
[8] H. Gasteiger,et al. Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure, 7 Li, 29 Si, and 31 P MAS NMR Spectroscopy, and Impedance Spectroscopy of Li8 SiP4 and Li2 SiP2. , 2016, Chemistry.
[9] D. Johrendt,et al. Supertetrahedral Networks and Lithium-Ion Mobility in Li2 SiP2 and LiSi2 P3. , 2016, Angewandte Chemie.
[10] Jürgen Janek,et al. A solid future for battery development , 2016, Nature Energy.
[11] Satoshi Hori,et al. High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.
[12] Gerbrand Ceder,et al. Interface Stability in Solid-State Batteries , 2016 .
[13] Peter Lamp,et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.
[14] S. Ong,et al. Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.
[15] G. Sheldrick. Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.
[16] Alexander Kuhn,et al. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. , 2014, Physical chemistry chemical physics : PCCP.
[17] Wolfgang G. Zeier,et al. Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li₆MLa₂Ta₂O₁₂. , 2014, ACS applied materials & interfaces.
[18] Klaus Zick,et al. Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.
[19] Fujio Izumi,et al. Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting , 2013, Powder Diffraction.
[20] T. Fässler,et al. Single Crystal Growth and Thermodynamic Stability of Li17Si4 , 2013 .
[21] A. Senyshyn,et al. High-temperature properties of lithium tetraborate Li2B4O7 , 2012 .
[22] M. Hoelzel,et al. High-resolution neutron powder diffractometer SPODI at research reactor FRM II , 2012 .
[23] Fujio Izumi,et al. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .
[24] Yuki Kato,et al. A lithium superionic conductor. , 2011, Nature materials.
[25] Ален Марбеф,et al. Моделирование структуры матриц, включающих наноча-стицы: молекулярная динамика в Li 2 B 4 O 7 , 2010 .
[26] H. Deiseroth,et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.
[27] F. Disalvo,et al. Reinvestigation of trilithium phosphide, Li3P , 2007 .
[28] Matt Probert,et al. First principles methods using CASTEP , 2005 .
[29] Michele Parrinello,et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..
[30] R. Kanno,et al. Structure of the thio-LISICON, Li4GeS4 , 2002 .
[31] S. Ito,et al. Synthesis of new lithium ionic conductor thio-LISICON-lithium silicon sulfides system , 2002 .
[32] K. Knight,et al. Thermal expansion and crystal structure of FeSi between 4 and 1173 K determined by time-of-flight neutron powder diffraction , 2002 .
[33] R. Kanno,et al. Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .
[34] Christopher J. Gilmore,et al. Maximum Entropy and Bayesian Statistics in Crystallography: a Review of Practical Applications , 1996 .
[35] K Schulten,et al. VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.
[36] B. S. Kwak,et al. Synthesis, Crystal Structure, and Ionic Conductivity of a Polycrystalline Lithium Phosphorus Oxynitride with the γ-Li3PO4 Structure , 1995 .
[37] R. Maxwell,et al. {sup 31}P-{sup 113}Cd and {sup 31}P-{sup 29}Si CP/MAS-NMR in inorganic semiconductors , 1992 .
[38] Anthony R. West,et al. Solid State Chemistry and its Applications , 1984 .
[39] M. Ribes,et al. The effects of mixed anions in ionic conductive glasses , 1983 .
[40] B. Huberman,et al. Superionic conductors: Transitions, structures, dynamics , 1979 .
[41] A. West,et al. Impedance and modulus spectroscopy of polycrystalline solid electrolytes , 1976 .
[42] R. Juza,et al. Ternäre Phosphide und Arsenide des Lithiums mit Elementen der 3. und 4. Gruppe , 1954 .
[43] G. Brauer,et al. Konstitution der Lithium‐Wismut‐Legierungen: 14. Mitteilung über Metalle u. Legierungen , 1935 .