Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate Li14SiP6.

Solid electrolytes with superionic conductivity are required as a main component for all-solid-state batteries. Here we present a novel solid electrolyte with three-dimensional conducting pathways based on "lithium-rich" phosphidosilicates with ionic conductivity of σ > 10-3 S cm-1 at room temperature and activation energy of 30-32 kJ mol-1 expanding the recently introduced family of lithium phosphidotetrelates. Aiming towards higher lithium ion conductivities systematic investigations of lithium phosphidosilicates gave access to the so far lithium-richest compound within this class of materials. The crystalline material (space group Fm"3" ̅m), which shows reversible thermal phase transitions, can be readily obtained by ball mill synthesis from the elements followed by moderate thermal treatment of the mixture. Lithium diffusion pathways via both, tetrahedral and octahedral voids, are analyzed by temperature-dependent powder neutron diffraction measurements in combination with maximum entropy method (MEM) and DFT calculations. Moreover, the lithium ion mobility structurally indicated by a disordered Li/Si occupancy in the tetrahedral voids plus partially filled octahedral voids, is studied by temperature-dependent impedance and 7Li-NMR spectroscopy.

[1]  Enhanced Li-ion dynamics in trivalently doped lithium phosphidosilicate Li2SiP2: a candidate material as a solid Li electrolyte , 2019, Journal of Materials Chemistry A.

[2]  C. Dietrich,et al.  Lithium Phosphidogermanates α- and β-Li8GeP4—A Novel Compound Class with Mixed Li+ Ionic and Electronic Conductivity , 2018, Chemistry of Materials.

[3]  O. Dolotko,et al.  Thermal Structural Behavior of Electrodes in Li-Ion Battery Studied In Operando , 2018 .

[4]  N. Kireeva,et al.  Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches. , 2017, Physical chemistry chemical physics : PCCP.

[5]  J. Janek,et al.  Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). , 2017, Journal of the American Chemical Society.

[6]  T. Fässler,et al.  Synthesis and Characterization of the Lithium-Rich Phosphidosilicates Li10Si2P6 and Li3Si3P7. , 2017, Inorganic chemistry.

[7]  M. Islam,et al.  Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect. , 2017, ACS applied materials & interfaces.

[8]  H. Gasteiger,et al.  Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure, 7 Li, 29 Si, and 31 P MAS NMR Spectroscopy, and Impedance Spectroscopy of Li8 SiP4 and Li2 SiP2. , 2016, Chemistry.

[9]  D. Johrendt,et al.  Supertetrahedral Networks and Lithium-Ion Mobility in Li2 SiP2 and LiSi2 P3. , 2016, Angewandte Chemie.

[10]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[11]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[12]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[13]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[14]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[15]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[16]  Alexander Kuhn,et al.  A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[17]  Wolfgang G. Zeier,et al.  Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li₆MLa₂Ta₂O₁₂. , 2014, ACS applied materials & interfaces.

[18]  Klaus Zick,et al.  Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.

[19]  Fujio Izumi,et al.  Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting , 2013, Powder Diffraction.

[20]  T. Fässler,et al.  Single Crystal Growth and Thermodynamic Stability of Li17Si4 , 2013 .

[21]  A. Senyshyn,et al.  High-temperature properties of lithium tetraborate Li2B4O7 , 2012 .

[22]  M. Hoelzel,et al.  High-resolution neutron powder diffractometer SPODI at research reactor FRM II , 2012 .

[23]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[24]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[25]  Ален Марбеф,et al.  Моделирование структуры матриц, включающих наноча-стицы: молекулярная динамика в Li 2 B 4 O 7 , 2010 .

[26]  H. Deiseroth,et al.  Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.

[27]  F. Disalvo,et al.  Reinvestigation of trilithium phosphide, Li3P , 2007 .

[28]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[29]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[30]  R. Kanno,et al.  Structure of the thio-LISICON, Li4GeS4 , 2002 .

[31]  S. Ito,et al.  Synthesis of new lithium ionic conductor thio-LISICON-lithium silicon sulfides system , 2002 .

[32]  K. Knight,et al.  Thermal expansion and crystal structure of FeSi between 4 and 1173 K determined by time-of-flight neutron powder diffraction , 2002 .

[33]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[34]  Christopher J. Gilmore,et al.  Maximum Entropy and Bayesian Statistics in Crystallography: a Review of Practical Applications , 1996 .

[35]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[36]  B. S. Kwak,et al.  Synthesis, Crystal Structure, and Ionic Conductivity of a Polycrystalline Lithium Phosphorus Oxynitride with the γ-Li3PO4 Structure , 1995 .

[37]  R. Maxwell,et al.  {sup 31}P-{sup 113}Cd and {sup 31}P-{sup 29}Si CP/MAS-NMR in inorganic semiconductors , 1992 .

[38]  Anthony R. West,et al.  Solid State Chemistry and its Applications , 1984 .

[39]  M. Ribes,et al.  The effects of mixed anions in ionic conductive glasses , 1983 .

[40]  B. Huberman,et al.  Superionic conductors: Transitions, structures, dynamics , 1979 .

[41]  A. West,et al.  Impedance and modulus spectroscopy of polycrystalline solid electrolytes , 1976 .

[42]  R. Juza,et al.  Ternäre Phosphide und Arsenide des Lithiums mit Elementen der 3. und 4. Gruppe , 1954 .

[43]  G. Brauer,et al.  Konstitution der Lithium‐Wismut‐Legierungen: 14. Mitteilung über Metalle u. Legierungen , 1935 .