Nonlinear Analysis of Experimental Time Series

This chapter contains sections titled: Introduction Reconstruction in the Embedding Space Testing for Nonlinearity with Surrogate Data Estimation of Invariants: Fractal Dimension and Lyapunov Exponents Dimension of Kaplan and Yorke Entropy Nonlinear Noise Reduction Conclusion Appendix

[1]  Hsu,et al.  Local-geometric-projection method for noise reduction in chaotic maps and flows. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[2]  S Cerutti,et al.  Short and long term non-linear analysis of RR variability series. , 2002, Medical engineering & physics.

[3]  Schreiber,et al.  Noise reduction in chaotic time-series data: A survey of common methods. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  F. Esposti,et al.  Long-term invariant parameters obtained from 24-h Holter recordings: a comparison between different analysis techniques. , 2007, Chaos.

[5]  Thomas Schreiber,et al.  Constrained Randomization of Time Series Data , 1998, chao-dyn/9909042.

[6]  L. Amaral,et al.  Multifractality in human heartbeat dynamics , 1998, Nature.

[7]  L. Chua,et al.  Chaos: A tutorial for engineers , 1987, Proceedings of the IEEE.

[8]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[9]  D. Ruelle Ergodic theory of differentiable dynamical systems , 1979 .

[10]  Andrew M. Fraser,et al.  Information and entropy in strange attractors , 1989, IEEE Trans. Inf. Theory.

[11]  T. Musha,et al.  1/f Fluctuation of Heartbeat Period , 1982, IEEE Transactions on Biomedical Engineering.

[12]  James A. Yorke,et al.  Noise Reduction: Finding the Simplest Dynamical System Consistent with the Data , 1989 .

[13]  Junichiro Hayano,et al.  Prognostic value of nonlinear heart rate dynamics in hemodialysis patients with coronary artery disease. , 2003, Kidney international.

[14]  T. Schreiber,et al.  Surrogate time series , 1999, chao-dyn/9909037.

[15]  A L Goldberger,et al.  Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. , 2000, Circulation.

[16]  M. P. Griffin,et al.  Sample entropy analysis of neonatal heart rate variability. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[17]  Brown,et al.  Computing the Lyapunov spectrum of a dynamical system from an observed time series. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[18]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[19]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[20]  P. Grassberger Generalized dimensions of strange attractors , 1983 .

[21]  A. Fraser Reconstructing attractors from scalar time series: A comparison of singular system and redundancy criteria , 1989 .

[22]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[23]  Schreiber,et al.  Improved Surrogate Data for Nonlinearity Tests. , 1996, Physical review letters.

[24]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[25]  A. Wolf,et al.  Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors , 1982 .

[26]  J. Fleiss,et al.  Power law behavior of RR-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants. , 1996, Circulation.

[27]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[28]  D. T. Kaplan,et al.  Direct test for determinism in a time series. , 1992, Physical review letters.

[29]  J. Richman,et al.  Physiological time-series analysis using approximate entropy and sample entropy. , 2000, American journal of physiology. Heart and circulatory physiology.

[30]  P. Grassberger,et al.  NONLINEAR TIME SEQUENCE ANALYSIS , 1991 .

[31]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[32]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[33]  T Seppänen,et al.  Power-law relationship of heart rate variability as a predictor of mortality in the elderly. , 1998, Circulation.

[34]  Jeffrey M. Hausdorff,et al.  Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. , 1995, Journal of electrocardiology.

[35]  A L Goldberger,et al.  Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. , 1997, The American journal of cardiology.

[36]  S. Pincus Approximate entropy (ApEn) as a complexity measure. , 1995, Chaos.

[37]  Steven M. Pincus,et al.  A regularity statistic for medical data analysis , 1991, Journal of Clinical Monitoring.

[38]  Jørgen K. Kanters,et al.  Lack of Evidence for Low‐Dimensional Chaos in Heart Rate Variability , 1994, Journal of cardiovascular electrophysiology.

[39]  D. Levy,et al.  Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. , 1997, Circulation.

[40]  H. Abarbanel,et al.  Lyapunov exponents from observed time series. , 1990, Physical review letters.

[41]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.