Inferior Temporal, Prefrontal, and Hippocampal Contributions to Visual Working Memory Maintenance and Associative Memory Retrieval

Higher order cognition depends on the ability to recall information from memory and hold it in mind to guide future behavior. To specify the neural mechanisms underlying these processes, we used event-related functional magnetic resonance imaging to compare brain activity during the performance of a visual associative memory task and a visual working memory task. Activity within category-selective subregions of inferior temporal cortex reflected the type of information that was actively maintained during both the associative memory and working memory tasks. In addition, activity in the anterior prefrontal cortex and hippocampus was specifically enhanced during associative memory retrieval. These data are consistent with the view that the active maintenance of visual information is supported by activation of object representations in inferior temporal cortex, but that goal-directed associative memory retrieval additionally depends on top-down signals from the anterior prefrontal cortex and medial temporal lobes.

[1]  J. Fuster,et al.  Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. , 1981, Science.

[2]  J M Fuster,et al.  Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  S. Kosslyn,et al.  Individual differences in mental imagery ability: A computational analysis , 1984, Cognition.

[4]  M. Petrides Deficits on conditional associative-learning tasks after frontal- and temporal-lobe lesions in man , 1985, Neuropsychologia.

[5]  Y. Miyashita,et al.  Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita , 1988, Nature.

[6]  Y. Miyashita Neuronal correlate of visual associative long-term memory in the primate temporal cortex , 1988, Nature.

[7]  Y. Miyashita,et al.  Neural organization for the long-term memory of paired associates , 1991, Nature.

[8]  M. J. Eacott,et al.  Inferotemporal‐frontal Disconnection: The Uncinate Fascicle and Visual Associative Learning in Monkeys , 1992, The European journal of neuroscience.

[9]  R. Desimone,et al.  Activity of neurons in anterior inferior temporal cortex during a short- term memory task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  K. Nakamura,et al.  Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task. , 1995, Journal of neurophysiology.

[11]  Y. Miyashita,et al.  Activity of primate inferotemporal neurons related to a sought target in pair-association task. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Y Miyashita,et al.  Feedback signal from medial temporal lobe mediates visual associative mnemonic codes of inferotemporal neurons. , 1996, Brain research. Cognitive brain research.

[13]  Robert T. Knight,et al.  Cohesion Failure as a Source of Memory Illusions , 1996 .

[14]  Edward E. Smith,et al.  PET Evidence for an Amodal Verbal Working Memory System , 1996, NeuroImage.

[15]  M. D’Esposito,et al.  Empirical Analyses of BOLD fMRI Statistics , 1997, NeuroImage.

[16]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[17]  Leslie G. Ungerleider,et al.  Transient and sustained activity in a distributed neural system for human working memory , 1997, Nature.

[18]  S. Gutnikov,et al.  Temporo‐frontal Disconnection Impairs Visual‐visual Paired Association Learning but not Configural Learning in Macaca Monkeys , 1997, The European journal of neuroscience.

[19]  M. D’Esposito,et al.  Empirical Analyses of BOLD fMRI Statistics , 1997, NeuroImage.

[20]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[21]  E. Zohary,et al.  Inter-trial neuronal activity in inferior temporal cortex: a putative vehicle to generate long-term visual associations , 1998, Nature Neuroscience.

[22]  Y. Miyashita,et al.  Callosal window between prefrontal cortices: cognitive interaction to retrieve long-term memory. , 1998, Science.

[23]  Leslie G. Ungerleider,et al.  Sustained Activity in the Medial Wall during Working Memory Delays , 1998, The Journal of Neuroscience.

[24]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[25]  G K Aguirre,et al.  Neural components of topographical representation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[27]  K. Nakayama,et al.  The effect of face inversion on the human fusiform face area , 1998, Cognition.

[28]  M. D’Esposito,et al.  An Area within Human Ventral Cortex Sensitive to “Building” Stimuli Evidence and Implications , 1998, Neuron.

[29]  E. Koechlin,et al.  The role of the anterior prefrontal cortex in human cognition , 1999, Nature.

[30]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[31]  Ken A. Paller,et al.  Frontal Brain Potentials during Recognition Are Modulated by Requirements to Retrieve Perceptual Detail , 1999, Neuron.

[32]  H G Wieser,et al.  Human hippocampus associates information in memory. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  E. Miller,et al.  Prospective Coding for Objects in Primate Prefrontal Cortex , 1999, The Journal of Neuroscience.

[34]  Y. Miyashita,et al.  Top-down signal from prefrontal cortex in executive control of memory retrieval , 1999, Nature.

[35]  G. McCarthy,et al.  The Influence of Memory Load Upon Delay-Interval Activity in a Working-Memory Task: An Event-Related Functional MRI Study , 2000, Journal of Cognitive Neuroscience.

[36]  Leslie G. Ungerleider,et al.  Distributed Neural Systems for the Generation of Visual Images , 2000, Neuron.

[37]  C. Rorden,et al.  Stereotaxic display of brain lesions. , 2000, Behavioural neurology.

[38]  Marcia K. Johnson,et al.  Left Anterior Prefrontal Activation Increases with Demands to Recall Specific Perceptual Information , 2000, The Journal of Neuroscience.

[39]  N. Kanwisher,et al.  Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions , 2000, Journal of Cognitive Neuroscience.

[40]  A. Ishai,et al.  Distributed neural systems for the generation of visual images , 2000, NeuroImage.

[41]  Y. Miyashita,et al.  Neural representation of visual objects: encoding and top-down activation , 2000, Current Opinion in Neurobiology.

[42]  R. Passingham,et al.  The prefrontal cortex: response selection or maintenance within working memory? , 2000, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[43]  B. Postle,et al.  Using event-related fMRI to assess delay-period activity during performance of spatial and nonspatial working memory tasks. , 2000, Brain research. Brain research protocols.

[44]  S. Petersen,et al.  Characterizing the Hemodynamic Response: Effects of Presentation Rate, Sampling Procedure, and the Possibility of Ordering Brain Activity Based on Relative Timing , 2000, NeuroImage.

[45]  Y. Miyashita,et al.  Backward spreading of memory-retrieval signal in the primate temporal cortex. , 2001, Science.

[46]  K. Kiehl,et al.  Removal of Confounding Effects of Global Signal in Functional MRI Analyses , 2001, NeuroImage.

[47]  L. Squire,et al.  Simple and associative recognition memory in the hippocampal region. , 2001, Learning & memory.

[48]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[49]  M. D’Esposito,et al.  Medial Temporal Lobe Activity Associated with Active Maintenance of Novel Information , 2001, Neuron.

[50]  S. Kosslyn,et al.  Bridging psychology and biology. The analysis of individuals in groups. , 2002, The American psychologist.

[51]  Pierre Maquet,et al.  Brain activity underlying encoding and retrieval of source memory. , 2002, Cerebral cortex.

[52]  N. Kanwisher,et al.  How Distributed Is Visual Category Information in Human Occipito-Temporal Cortex? An fMRI Study , 2002, Neuron.

[53]  R. Malach,et al.  The topography of high-order human object areas , 2002, Trends in Cognitive Sciences.

[54]  Leslie G. Ungerleider,et al.  Visual Imagery of Famous Faces: Effects of Memory and Attention Revealed by fMRI , 2002, NeuroImage.

[55]  Charan Ranganath,et al.  Coding of Objects in the Prefrontal Cortex in Monkeys and Humans , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[56]  Florin Dolcos,et al.  Similarities and Differences in the Neural Correlates of Episodic Memory Retrieval and Working Memory , 2002, NeuroImage.

[57]  Leslie G. Ungerleider,et al.  Neural Correlates of Visual Working Memory fMRI Amplitude Predicts Task Performance , 2002, Neuron.

[58]  L. Frank,et al.  Single Neurons in the Monkey Hippocampus and Learning of New Associations , 2003, Science.

[59]  Yasushi Miyashita,et al.  Delay‐period activities in two subdivisions of monkey inferotemporal cortex during pair association memory task , 2003, The European journal of neuroscience.

[60]  Jeremy R. Reynolds,et al.  Neural Mechanisms of Transient and Sustained Cognitive Control during Task Switching , 2003, Neuron.

[61]  Rainer Goebel,et al.  Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network , 2003, NeuroImage.

[62]  Marcia K. Johnson,et al.  Prefrontal activity associated with working memory and episodic long-term memory , 2003, Neuropsychologia.

[63]  Yasushi Miyashita,et al.  Forward Processing of Long-Term Associative Memory in Monkey Inferotemporal Cortex , 2003, The Journal of Neuroscience.

[64]  M. D’Esposito,et al.  Dissecting Contributions of Prefrontal Cortex and Fusiform Face Area to Face Working Memory , 2003, Journal of Cognitive Neuroscience.

[65]  E. Miller,et al.  Neural circuits subserving the retrieval and maintenance of abstract rules. , 2003, Journal of neurophysiology.

[66]  Hans-Jochen Heinze,et al.  Human Hippocampal and Parahippocampal Activity during Visual Associative Recognition Memory for Spatial and Nonspatial Stimulus Configurations , 2003, The Journal of Neuroscience.

[67]  S P Wise,et al.  Role of the hippocampal system in associative learning beyond the spatial domain. , 2003, Brain : a journal of neurology.

[68]  Jason P. Mitchell,et al.  Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  R. Passingham,et al.  Prefrontal interactions reflect future task operations , 2003, Nature Neuroscience.

[70]  A. Wagner,et al.  Prefrontal and hippocampal contributions to visual associative recognition: Interactions between cognitive control and episodic retrieval , 2004, Brain and Cognition.

[71]  Stephen M. Kosslyn,et al.  Brain rCBF and performance in visual imagery tasks: Common and distinct processes , 2004 .

[72]  Sabrina M. Tom,et al.  Dissociable correlates of recollection and familiarity within the medial temporal lobes , 2004, Neuropsychologia.

[73]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[74]  A. Owen,et al.  Anterior prefrontal cortex: insights into function from anatomy and neuroimaging , 2004, Nature Reviews Neuroscience.

[75]  Alison R Preston,et al.  Hippocampal contribution to the novel use of relational information in declarative memory , 2004, Hippocampus.

[76]  M. D’Esposito,et al.  Category-specific modulation of inferior temporal activity during working memory encoding and maintenance. , 2004, Brain research. Cognitive brain research.