Tensor space-time (TST) coding for MIMO wireless communication systems

In this paper, we propose a tensor space-time (TST) coding for multiple-input multiple-output (MIMO) wireless communication systems. The originality of TST coding is that it allows spreading and multiplexing the transmitted symbols, belonging to R data streams, in both space (antennas) and time (chips and blocks) domains, owing the use of two (stream- and antenna-to-block) allocation matrices. This TST coding is defined in terms of a third-order code tensor admitting transmit antenna, data stream and chip as modes. Assuming flat Rayleigh fading propagation channels, the signals received by K receive antennas during P time blocks, composed of N symbol periods each, with J chips per symbol, form a fourth-order tensor that satisfies a new constrained tensor model, called a PARATUCK-(2,4) model. Conditions for identifiability and uniqueness of this model are established, and a performance analysis of TST coding is made, before presenting a blind receiver for joint channel estimation and symbol recovery. Finally, some simulation results are provided to evaluate the performance of this receiver.

[1]  S. Mayrargue,et al.  A blind spatio-temporal equalizer for a radio-mobile channel using the constant modulus algorithm (CMA) , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[2]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices , 2008, SIAM J. Matrix Anal. Appl..

[3]  A. de Baynast,et al.  Blind PARAFAC receivers for multiple access-multiple antenna systems , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[4]  Shuangzhe Liu,et al.  Matrix results on the Khatri-Rao and Tracy-Singh products , 1999 .

[5]  Moe Z. Win,et al.  Space-time-frequency (STF) coding for MIMO-OFDM systems , 2002, IEEE Communications Letters.

[6]  J. Berge,et al.  Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays , 1991 .

[7]  Alwin Stegeman,et al.  On Uniqueness of the nth Order Tensor Decomposition into Rank-1 Terms with Linear Independence in One Mode , 2010, SIAM J. Matrix Anal. Appl..

[8]  P. Comon,et al.  Generic and typical ranks of multi-way arrays , 2009 .

[9]  Nikos D. Sidiropoulos,et al.  Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints , 2004, IEEE Transactions on Signal Processing.

[10]  Hamid Jafarkhani Space-Time Coding: Space-time trellis codes , 2005 .

[11]  David G. Messerschmitt,et al.  DIGITAL COMMUNICATIONS , 2013 .

[12]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[13]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[14]  Helmut Bölcskei,et al.  Space-frequency coded broadband OFDM systems , 2000, 2000 IEEE Wireless Communications and Networking Conference. Conference Record (Cat. No.00TH8540).

[15]  Lieven De Lathauwer,et al.  Blind Deconvolution of DS-CDMA Signals by Means of Decomposition in Rank-$(1,L,L)$ Terms , 2008, IEEE Transactions on Signal Processing.

[16]  John G. Proakis,et al.  Digital Communications , 1983 .

[17]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[18]  Arogyaswami Paulraj,et al.  An analytical constant modulus algorithm , 1996, IEEE Trans. Signal Process..

[19]  Mohamed Oussama Damen,et al.  A construction of a space-time code based on number theory , 2002, IEEE Trans. Inf. Theory.

[20]  A. Stegeman,et al.  On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition , 2007 .

[21]  Babak Hassibi,et al.  High-rate codes that are linear in space and time , 2002, IEEE Trans. Inf. Theory.

[22]  Alagan Anpalagan,et al.  On the Performance of a Constellation-rotated Time-spreaded Space-frequency Coding Scheme for 4 × 1 MISO OFDM Transceivers , 2011, Wirel. Pers. Commun..

[23]  Gérard Favier,et al.  A constrained tensor-based approach for MIMO NL-CDMA systems , 2010, 2010 18th European Signal Processing Conference.

[24]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[25]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[26]  André Lima Férrer de Almeida,et al.  Constrained Tensor Modeling Approach to Blind Multiple-Antenna CDMA Schemes , 2008, IEEE Transactions on Signal Processing.

[27]  S. Talwar,et al.  Blind estimation of multiple digital signals transmitted over FIR channels , 1995, IEEE Signal Processing Letters.

[28]  Lieven De Lathauwer,et al.  A Block Component Model-Based Blind DS-CDMA Receiver , 2008, IEEE Transactions on Signal Processing.

[29]  G. Favier,et al.  Space-Time Multiplexing Codes: A Tensor Modeling Approach , 2006, 2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications.

[30]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[31]  Lieven De Lathauwer,et al.  Levenberg-Marquardt computation of the Block Factor Model for blind multi-user access in wireless communications , 2006, 2006 14th European Signal Processing Conference.

[32]  Rasmus Bro,et al.  Multi-way Analysis with Applications in the Chemical Sciences , 2004 .

[33]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[34]  Lieven De Lathauwer,et al.  An enhanced line search scheme for complex-valued tensor decompositions. Application in DS-CDMA , 2008, Signal Process..

[35]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[36]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[37]  R. Harshman,et al.  Modeling multi‐way data with linearly dependent loadings , 2009 .

[38]  Abbas Jamalipour,et al.  Wireless communications , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[39]  Pierre Comon,et al.  Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..

[40]  André Lima Férrer de Almeida,et al.  Multiuser MIMO system using block space-time spreading and tensor modeling , 2008, Signal Process..

[41]  André Lima Férrer de Almeida,et al.  PARAFAC-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization , 2007, Signal Process..

[42]  Yi Hong,et al.  On Fast-Decodable Space-Time Block Codes , 2008 .

[43]  Xiaodong Wang,et al.  Space-time code design in OFDM systems , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[44]  K. J. Ray Liu,et al.  Full-rate full-diversity space-frequency codes with optimum coding advantage , 2005, IEEE Transactions on Information Theory.

[45]  Reinaldo A. Valenzuela,et al.  V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel , 1998, 1998 URSI International Symposium on Signals, Systems, and Electronics. Conference Proceedings (Cat. No.98EX167).

[46]  Sumit Roy,et al.  Rate-one space-frequency block codes with maximum diversity for MIMO-OFDM , 2005, IEEE Transactions on Wireless Communications.

[47]  Lizhong Zheng,et al.  Diversity-multiplexing tradeoff in multiple-access channels , 2004, IEEE Transactions on Information Theory.

[48]  André Lima Férrer de Almeida,et al.  Space-time spreading-multiplexing for MIMO wireless communication systems using the PARATUCK-2 tensor model , 2009, Signal Process..

[49]  Georgios B. Giannakis,et al.  Space-time-frequency coded OFDM over frequency-selective fading channels , 2002, IEEE Trans. Signal Process..

[50]  André Lima Férrer de Almeida,et al.  A Constrained Factor Decomposition With Application to MIMO Antenna Systems , 2008, IEEE Transactions on Signal Processing.

[51]  J. Berge,et al.  Partial uniqueness in CANDECOMP/PARAFAC , 2004 .

[52]  Hamid Jafarkhani A quasi-orthogonal space-time block code , 2001, IEEE Trans. Commun..

[53]  다벡아난드지.,et al.  Space time block coded transmit antenna diversity for wcdma , 1999 .

[54]  Dazhuan Xu,et al.  Performance Analysis of Space-Time Coded CDMA System Over Nakagami Fading Channels with Perfect and Imperfect CSI , 2010, Wireless Personal Communications.

[55]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[56]  H. Law Research methods for multimode data analysis , 1984 .

[57]  Gérard Favier,et al.  Blind joint identification and equalization of Wiener-Hammerstein communication channels using PARATUCK-2 tensor decomposition , 2007, 2007 15th European Signal Processing Conference.

[58]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[59]  Branka Vucetic,et al.  Space-Time Coding , 2003 .

[60]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[61]  A.J. Paulraj,et al.  Space-frequency codes for broadband fading channels , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[62]  Rick S. Blum,et al.  Improved space-time coding for MIMO-OFDM wireless communications , 2001, IEEE Trans. Commun..

[63]  Rasmus Bro,et al.  Recent developments in CANDECOMP/PARAFAC algorithms: a critical review , 2003 .

[64]  R. Harshman,et al.  Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp , 1996 .

[65]  Thomas L. Marzetta,et al.  A transmitter diversity scheme for wideband CDMA systems based on space-time spreading , 2001, IEEE J. Sel. Areas Commun..

[66]  J. Berge,et al.  On uniqueness in candecomp/parafac , 2002 .

[67]  XIJING GUO,et al.  Uni-mode and Partial Uniqueness Conditions for CANDECOMP/PARAFAC of Three-Way Arrays with Linearly Dependent Loadings , 2012, SIAM J. Matrix Anal. Appl..

[68]  A. Stegeman On uniqueness conditions for Candecomp/Parafac and Indscal with full column rank in one mode , 2009 .

[69]  Chau Yuen,et al.  Quasi-orthogonal STBC with minimum decoding complexity , 2005, IEEE Transactions on Wireless Communications.

[70]  Helmut Bölcskei,et al.  An overview of MIMO communications - a key to gigabit wireless , 2004, Proceedings of the IEEE.

[71]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[72]  Wilhelm Keusgen On limits of wireless communications when using multiple dual-polarized antennas , 2003, 10th International Conference on Telecommunications, 2003. ICT 2003..

[73]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[74]  Harish Viswanathan,et al.  Multiple antennas in cellular CDMA systems: transmission, detection, and spectral efficiency , 2002, IEEE Trans. Wirel. Commun..

[75]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[76]  Georgios B. Giannakis,et al.  Space-time coding for broadband wireless communications , 2003, Wirel. Commun. Mob. Comput..

[77]  André Lima Férrer de Almeida,et al.  Space-Time-Frequency (STF) MIMO Communication Systems With Blind Receiver Based on a Generalized PARATUCK2 Model , 2013, IEEE Transactions on Signal Processing.

[78]  André Lima Férrer de Almeida,et al.  Constrained Tucker-3 model for blind beamforming , 2009, Signal Process..

[79]  J. Rhodes A concise proof of Kruskal’s theorem on tensor decomposition , 2009, 0901.1796.

[80]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[81]  G. Turin The characteristic function of Hermitian quadratic forms in complex normal variables , 1960 .

[82]  Davinder S. Saini,et al.  Space–Time/Space–Frequency/Space–Time–Frequency Block Coded MIMO-OFDM System with Equalizers in Quasi Static Mobile Radio Channels Using Higher Tap Order , 2013, Wirel. Pers. Commun..

[83]  Nikos D. Sidiropoulos,et al.  Adaptive Algorithms to Track the PARAFAC Decomposition of a Third-Order Tensor , 2009, IEEE Transactions on Signal Processing.

[84]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1995, IEEE Trans. Signal Process..

[85]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..

[86]  Xue-Bin Liang,et al.  Orthogonal designs with maximal rates , 2003, IEEE Trans. Inf. Theory.

[87]  Mohamed Oussama Damen,et al.  Universal space-time coding , 2003, IEEE Trans. Inf. Theory.

[88]  Xiaodong Wang,et al.  An Analysis of the MIMO–SDMA Channel With Space–Time Orthogonal and Quasi-Orthogonal User Transmissions and Efficient Successive Cancellation Decoders , 2008, IEEE Transactions on Information Theory.

[89]  N.D. Sidiropoulos,et al.  Blind multiuser detection in W-CDMA systems with large delay spread , 2001, IEEE Signal Processing Letters.

[90]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[91]  K.J.R. Liu,et al.  Towards maximum achievable diversity in space, time, and frequency: performance analysis and code design , 2005, IEEE Transactions on Wireless Communications.

[92]  David Brie,et al.  An uniqueness condition for the 4-way CANDECOMP/PARAFAC model with collinear loadings in three modes , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[93]  Constantinos B. Papadias,et al.  Improved quasi-orthogonal codes through constellation rotation , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[94]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[95]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[96]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[97]  Khaled Ben Letaief,et al.  Space-frequency-time coded OFDM for broadband wireless communications , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[98]  Nikos D. Sidiropoulos,et al.  Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays , 2001, IEEE Trans. Signal Process..

[99]  Richard A. Harshman,et al.  Determination and Proof of Minimum Uniqueness Conditions for PARAFAC1 , 1972 .

[100]  André Lima Férrer de Almeida,et al.  Uniqueness Conditions for Constrained Three-Way Factor Decompositions with Linearly Dependent Loadings , 2009, SIAM J. Matrix Anal. Appl..

[101]  Geoffrey Ye Li,et al.  Broadband MIMO-OFDM wireless communications , 2004, Proceedings of the IEEE.

[102]  Ran Gozali,et al.  Space-Time Codes for High Data Rate Wireless Communications , 2002 .

[103]  Anzhong Wong,et al.  Novel Rotated Quasi-Orthogonal Space-Time Block Codes With the Fixed Nearest Neighbor Number , 2010, IEEE Signal Process. Lett..

[104]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[105]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[106]  Nikos D. Sidiropoulos,et al.  Identifiability results for blind beamforming in incoherent multipath with small delay spread , 2001, IEEE Trans. Signal Process..

[107]  Norman C. Beaulieu,et al.  Linear threaded algebraic space-time constellations , 2003, IEEE Trans. Inf. Theory.

[108]  Nikos D. Sidiropoulos,et al.  Khatri-Rao space-time codes , 2002, IEEE Trans. Signal Process..

[109]  Claude Oestges,et al.  MIMO Wireless Communications: From Real-World Propagation to Space-Time Code Design , 2007 .

[110]  Alan J. Mayne,et al.  Generalized Inverse of Matrices and its Applications , 1972 .