Spectral-like duality for distributive Hilbert algebras with infimum
暂无分享,去创建一个
[1] A. Tarski,et al. Boolean Algebras with Operators. Part I , 1951 .
[2] G. Grätzer. General Lattice Theory , 1978 .
[3] A. Tarski,et al. Boolean Algebras with Operators , 1952 .
[4] Mai Gehrke,et al. Duality for Double Quasioperator Algebras via their Canonical Extensions , 2007, Stud Logica.
[5] Hilary A. Priestley,et al. Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .
[6] Sergio A. Celani,et al. Representation of Hilbert algebras and implicative semilattices , 2003 .
[7] Guram Bezhanishvili,et al. Priestley Style Duality for Distributive Meet-semilattices , 2011, Stud Logica.
[8] Michael Soltys. Bulletin of the Section of Logic , 2002 .
[9] A. Figallo,et al. iH-propositional calculus , 2006 .
[10] Guram Bezhanishvili,et al. Bitopological duality for distributive lattices and Heyting algebras , 2010, Mathematical Structures in Computer Science.
[11] A. Monteiro. Sur les algèbres de Heyting symétriques , 1980 .
[12] S. Celani,et al. Some remarks on distributive semilattices , 2013 .
[13] M. Erné. Algebraic models for T1-spaces , 2011 .
[14] M. Stone. The theory of representations for Boolean algebras , 1936 .
[15] Celani Sergio Arturo. TOPOLOGICAL REPRESENTATION OF DISTRIBUTIVE SEMILATTICES , 2003 .
[16] Sergio A. Celani,et al. Priestley dualities for some lattice-ordered algebraic structures, including MTL, IMTL and MV-algebras , 2006 .
[17] Marcel Erné,et al. Algebraic Ordered Sets and Their Generalizations , 1993 .
[18] Robert Goldblatt,et al. Varieties of Complex Algebras , 1989, Ann. Pure Appl. Log..
[19] Ramon Jansana,et al. On the free implicative semilattice extension of a Hilbert algebra , 2012, Math. Log. Q..
[20] L. Cabrer,et al. Representation and duality for Hilbert algebras , 2009 .
[21] S. Celani. A NOTE ON HOMOMORPHISMS OF HILBERT ALGEBRAS , 2002 .
[22] S. Celani,et al. Hilbert algebras with supremum , 2012 .
[23] Ideal completion and Stone representation of ideal-distributive ordered sets , 1992 .
[24] Bernhard Banaschewski,et al. On Krull's Separation Lemma , 1993 .
[25] M. Stone. Topological representations of distributive lattices and Brouwerian logics , 1938 .