Constraints imposed by the membrane selectively guide the alternating access dynamics of the glutamate transporter GltPh.

[1]  PETER MITCHELL,et al.  A General Theory of Membrane Transport From Studies of Bacteria , 1957, Nature.

[2]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[3]  M. Kavanaugh,et al.  Flux coupling in a neuronal glutamate transporter , 1996, Nature.

[4]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[5]  Masahiko Watanabe,et al.  Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. , 1997, Science.

[6]  R. Cantor,et al.  Lipid composition and the lateral pressure profile in bilayers. , 1999, Biophysical journal.

[7]  R. Cantor,et al.  The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. , 1999, Chemistry and physics of lipids.

[8]  W. Konings,et al.  Structural Features of the Glutamate Transporter Family , 1999, Microbiology and Molecular Biology Reviews.

[9]  K. Hinsen,et al.  Harmonicity in slow protein dynamics , 2000 .

[10]  Ivet Bahar,et al.  Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: Application to α‐amylase inhibitor , 2000, Proteins.

[11]  Y. Sanejouand,et al.  Building‐block approach for determining low‐frequency normal modes of macromolecules , 2000, Proteins.

[12]  R. Jernigan,et al.  Anisotropy of fluctuation dynamics of proteins with an elastic network model. , 2001, Biophysical journal.

[13]  A. Bendahan,et al.  Proximity of Two Oppositely Oriented Reentrant Loops in the Glutamate Transporter GLT-1 Identified by Paired Cysteine Mutagenesis* , 2002, The Journal of Biological Chemistry.

[14]  S. Amara,et al.  Excitatory amino acid transporters: keeping up with glutamate , 2002, Neurochemistry International.

[15]  Guohui Li,et al.  A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(2+)-ATPase. , 2002, Biophysical journal.

[16]  Y. Sanejouand,et al.  Dynamical properties of the MscL of Escherichia coli: a normal mode analysis. , 2003, Journal of molecular biology.

[17]  M. Kavanaugh,et al.  Fluorometric measurements of conformational changes in glutamate transporters. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  E. Gouaux,et al.  Structure of a glutamate transporter homologue from Pyrococcus horikoshii , 2004, Nature.

[19]  T. Rauen,et al.  Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. , 2005, Biochemistry.

[20]  M. Wall,et al.  Allostery in a coarse-grained model of protein dynamics. , 2005, Physical review letters.

[21]  B. Brooks,et al.  Probing the local dynamics of nucleotide-binding pocket coupled to the global dynamics: myosin versus kinesin. , 2005, Biophysical journal.

[22]  J. Changeux,et al.  Normal mode analysis suggests a quaternary twist model for the nicotinic receptor gating mechanism. , 2005, Biophysical journal.

[23]  H. Larsson,et al.  Small-Scale Molecular Motions Accomplish Glutamate Uptake in Human Glutamate Transporters , 2005, The Journal of Neuroscience.

[24]  S. Amara,et al.  Structural Rearrangements at the Translocation Pore of the Human Glutamate Transporter, EAAT1* , 2006, Journal of Biological Chemistry.

[25]  G. Phillips,et al.  Optimization and evaluation of a coarse-grained model of protein motion using x-ray crystal data. , 2006, Biophysical journal.

[26]  Ivet Bahar,et al.  Common mechanism of pore opening shared by five different potassium channels. , 2006, Biophysical journal.

[27]  Peter C. Jordan,et al.  The open state gating mechanism of gramicidin a requires relative opposed monomer rotation and simultaneous lateral displacement. , 2006, Structure.

[28]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[29]  D. Slotboom,et al.  Rigidity of the subunit interfaces of the trimeric glutamate transporter GltT during translocation. , 2007, Journal of molecular biology.

[30]  Emily F. Stone,et al.  The Glutamate and Chloride Permeation Pathways Are Colocalized in Individual Neuronal Glutamate Transporter Subunits , 2007, The Journal of Neuroscience.

[31]  H. Larsson,et al.  The Glutamate-Activated Anion Conductance in Excitatory Amino Acid Transporters Is Gated Independently by the Individual Subunits , 2007, The Journal of Neuroscience.

[32]  Eric Gouaux,et al.  Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter , 2007, Nature.

[33]  B. Kanner,et al.  Substrates and Non-transportable Analogues Induce Structural Rearrangements at the Extracellular Entrance of the Glial Glutamate Transporter GLT-1/EAAT2* , 2008, Journal of Biological Chemistry.

[34]  K. Schulten,et al.  Mechanism of signal propagation upon retinal isomerization: insights from molecular dynamics simulations of rhodopsin restrained by normal modes. , 2008, Biophysical journal.

[35]  Ivet Bahar,et al.  Time-resolved Mechanism of Extracellular Gate Opening and Substrate Binding in a Glutamate Transporter*S⃞ , 2008, Journal of Biological Chemistry.

[36]  N. Reyes,et al.  Transport mechanism of a bacterial homologue of glutamate transporters , 2009, Nature.

[37]  Ivet Bahar,et al.  Global Motions of the Nuclear Pore Complex: Insights from Elastic Network Models , 2009, PLoS Comput. Biol..

[38]  Raffaello Potestio,et al.  Random matrix approach to collective behavior and bulk universality in protein dynamics. , 2009, Physical review letters.

[39]  I. Bahar,et al.  Molecular simulations elucidate the substrate translocation pathway in a glutamate transporter , 2009, Proceedings of the National Academy of Sciences.

[40]  Thomas J. Crisman,et al.  Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats , 2009, Proceedings of the National Academy of Sciences.

[41]  I. Bahar,et al.  Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. , 2010, Chemical reviews.

[42]  D. Slotboom,et al.  Na(+):aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph). , 2010, Biochemistry.

[43]  E. Tajkhorshid,et al.  Material Title : Identification of the Third Na + Site and the Sequence of Extracellular Binding Events in the Glutamate Transporter , 2010 .

[44]  Membrane interactions control residue fluctuations of outer membrane porins. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Ivet Bahar,et al.  On the functional significance of soft modes predicted by coarse-grained models for membrane proteins , 2010, The Journal of general physiology.

[46]  Ivet Bahar,et al.  Large collective motions regulate the functional properties of glutamate transporter trimers , 2011, Proceedings of the National Academy of Sciences.

[47]  I. Bahar,et al.  The mechanism of substrate release by the aspartate transporter GltPh: insights from simulations. , 2011, Molecular bioSystems.