Phase transitions in the frustrated Ising ladder with stoquastic and nonstoquastic catalysts

The role of non-stoquasticity in the field of quantum annealing and adiabatic quantum computing is an actively debated topic. We study a strongly-frustrated quasi-one-dimensional quantum Ising model on a two-leg ladder to elucidate how a first-order phase transition with a topological origin is affected by interactions of the $\pm XX$-type. Such interactions are sometimes known as stoquastic (negative sign) and non-stoquastic (positive sign) "catalysts". Carrying out a symmetry-preserving real-space renormalization group analysis and extensive density-matrix renormalization group computations, we show that the phase diagrams obtained by these two methods are in qualitative agreement with each other and reveal that the first-order quantum phase transition of a topological nature remains stable against the introduction of both $XX$-type catalysts. This is the first study of the effects of non-stoquasticity on a first-order phase transition between topologically distinct phases. Our results indicate that non-stoquastic catalysts are generally insufficient for removing topological obstacles in quantum annealing and adiabatic quantum computing.

[1]  R. Feynman Forces in Molecules , 1939 .

[2]  P. Pfeuty The one-dimensional Ising model with a transverse field , 1970 .

[3]  M. Suzuki,et al.  Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations , 1976 .

[4]  White,et al.  Sign problem in the numerical simulation of many-electron systems. , 1990, Physical review. B, Condensed matter.

[5]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[6]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[7]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[8]  A. Langari PHASE DIAGRAM OF THE ANTIFERROMAGNETIC XXZ MODEL IN THE PRESENCE OF AN EXTERNAL MAGNETIC FIELD , 1998, cond-mat/9805024.

[9]  M. Plenio,et al.  Entanglement-Assisted Local Manipulation of Pure Quantum States , 1999, quant-ph/9905071.

[10]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[11]  S. Sachdev Quantum Phase Transitions: A first course , 1999 .

[12]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[13]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[14]  S. Sachdev Quantum Phase Transitions , 1999 .

[15]  E. Farhi,et al.  Quantum Adiabatic Evolution Algorithms with Different Paths , 2002, quant-ph/0208135.

[16]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[17]  A. Langari Quantum renormalization group of XYZ model in a transverse magnetic field , 2004, cond-mat/0405444.

[18]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[19]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[20]  K. Hallberg New trends in density matrix renormalization , 2006, cond-mat/0609039.

[21]  Barbara M. Terhal,et al.  Merlin-Arthur Games and Stoquastic Complexity , 2006, ArXiv.

[22]  E. Tosatti,et al.  Optimization using quantum mechanics: quantum annealing through adiabatic evolution , 2006 .

[23]  Daniel A Lidar,et al.  Simple proof of equivalence between adiabatic quantum computation and the circuit model. , 2007, Physical review letters.

[24]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[25]  J. Biamonte,et al.  Realizable Hamiltonians for Universal Adiabatic Quantum Computers , 2007, 0704.1287.

[26]  David P. DiVincenzo,et al.  The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..

[27]  H. Nishimori,et al.  Mathematical foundation of quantum annealing , 2008, 0806.1859.

[28]  D. McMahon Adiabatic Quantum Computation , 2008 .

[29]  P. Love,et al.  Quantum-Merlin-Arthur-complete problems for stoquastic Hamiltonians and Markov matrices , 2009, 0905.4755.

[30]  Alán Aspuru-Guzik,et al.  A study of heuristic guesses for adiabatic quantum computation , 2008, Quantum Inf. Process..

[31]  Edward Farhi,et al.  Quantum adiabatic algorithms, small gaps, and different paths , 2009, Quantum Inf. Comput..

[32]  M. Amin,et al.  Does adiabatic quantum optimization fail for NP-complete problems? , 2010, Physical review letters.

[33]  西森 秀稔,et al.  Elements of Phase Transitions and Critical Phenomena , 2011 .

[34]  R. Moessner,et al.  Quantum adiabatic algorithm and scaling of gaps at first-order quantum phase transitions. , 2012, Physical review letters.

[35]  M. Amin,et al.  Algorithmic approach to adiabatic quantum optimization , 2011, 1108.3303.

[36]  H. Nishimori,et al.  Quantum annealing with antiferromagnetic fluctuations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  H. Nishimori,et al.  Many-body transverse interactions in the quantum annealing of the p-spin ferromagnet , 2012, 1207.2909.

[38]  H. Nishimori,et al.  Energy Gap at First-Order Quantum Phase Transitions: An Anomalous Case , 2013, 1306.2142.

[39]  Cedric Yen-Yu Lin,et al.  Different Strategies for Optimization Using the Quantum Adiabatic Algorithm , 2014, 1401.7320.

[40]  H. Nishimori,et al.  Quantum annealing with antiferromagnetic transverse interactions for the Hopfield model , 2014, 1410.0450.

[41]  B. Terhal,et al.  Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction. , 2014, Physical review letters.

[42]  Nicholas Chancellor,et al.  Modernizing quantum annealing using local searches , 2016, 1606.06833.

[43]  Hidetoshi Nishimori,et al.  Exponential Enhancement of the Efficiency of Quantum Annealing by Non-Stoquastic Hamiltonians , 2016, Frontiers ICT.

[44]  M. Troyer,et al.  Nonstoquastic Hamiltonians and quantum annealing of an Ising spin glass , 2016, 1609.06558.

[45]  Mark W. Johnson,et al.  Observation of topological phenomena in a programmable lattice of 1,800 qubits , 2018, Nature.

[46]  A. Amendola,et al.  Low Rank Non-Negative Matrix Factorization with D-Wave 2000Q , 2018, 1808.08721.

[47]  Daniel A. Lidar,et al.  Quantum annealing of the p -spin model under inhomogeneous transverse field driving , 2018, Physical Review A.

[48]  H. Nishimori,et al.  Exponential Speedup of Quantum Annealing by Inhomogeneous Driving of the Transverse Field , 2018, 1801.02005.

[49]  Daniel A. Lidar,et al.  On the computational complexity of curing non-stoquastic Hamiltonians , 2018, Nature Communications.

[50]  M. Mohseni,et al.  Engineering non-equilibrium quantum phase transitions via causally gapped Hamiltonians , 2018, New Journal of Physics.

[51]  P. McMahon,et al.  Inhomogeneous driving in quantum annealers can result in orders-of-magnitude improvements in performance , 2018, Quantum Science and Technology.

[52]  Daniel A. Lidar,et al.  Dynamics of reverse annealing for the fully connected p -spin model , 2018, Physical Review A.

[53]  Daniel A. Lidar,et al.  Adiabatic quantum computation , 2016, 1611.04471.

[54]  Dynamics of reverse annealing for the fully connected p -spin model , 2019, Physical Review A.

[55]  Travis S. Humble,et al.  Application of Quantum Annealing to Nurse Scheduling Problem , 2019, Scientific Reports.

[56]  Davide Venturelli,et al.  Reverse quantum annealing approach to portfolio optimization problems , 2018, Quantum Machine Intelligence.

[57]  E. Rieffel,et al.  Power of Pausing: Advancing Understanding of Thermalization in Experimental Quantum Annealers , 2018, Physical Review Applied.

[58]  T. Kadowaki,et al.  Experimental and Theoretical Study of Thermodynamic Effects in a Quantum Annealer , 2019, Journal of the Physical Society of Japan.

[59]  T. Albash Role of nonstoquastic catalysts in quantum adiabatic optimization , 2018, Physical Review A.

[60]  Itay Hen,et al.  Elucidating the Interplay between Non‐Stoquasticity and the Sign Problem , 2019, Advanced Quantum Technologies.

[61]  Milad Marvian,et al.  On the computational complexity of curing non-stoquastic Hamiltonians , 2019, Nature Communications.

[62]  G. Passarelli,et al.  Improving quantum annealing of the ferromagnetic p -spin model through pausing , 2019, Physical Review B.

[63]  Daniel A. Lidar,et al.  Reverse quantum annealing of the p -spin model with relaxation , 2019, Physical Review A.

[64]  Helmut G. Katzgraber,et al.  Perspectives of quantum annealing: methods and implementations , 2019, Reports on progress in physics. Physical Society.

[65]  Daniel A. Lidar,et al.  Why and When Pausing is Beneficial in Quantum Annealing , 2020, Physical Review Applied.

[66]  Daniel A. Lidar,et al.  Prospects for quantum enhancement with diabatic quantum annealing , 2020, Nature Reviews Physics.

[67]  Milad Marvian,et al.  Hardness and Ease of Curing the Sign Problem for Two-Local Qubit Hamiltonians , 2019, SIAM J. Comput..

[68]  S. Matsuura,et al.  Variationally scheduled quantum simulation , 2020, 2003.09913.

[69]  H. Nishimori,et al.  Mean-Field Solution of the Weak-Strong Cluster Problem for Quantum Annealing with Stoquastic and Non-Stoquastic Catalysts , 2019, Journal of the Physical Society of Japan.

[70]  Daniel A. Lidar,et al.  Quantum adiabatic theorem for unbounded Hamiltonians, with applications to superconducting circuits. , 2020 .

[71]  Kazuyuki Tanaka,et al.  Mean field analysis of reverse annealing for code-division multiple-access multiuser demodulator , 2020 .

[72]  A. Young,et al.  De-Signing Hamiltonians for Quantum Adiabatic Optimization , 2020, Quantum.

[73]  Enrico Prati,et al.  Quantum Semantic Learning by Reverse Annealing an Adiabatic Quantum Computer , 2020, ArXiv.

[74]  I. Hen,et al.  Efficient simulation of so-called non-stoquastic superconducting flux circuits. , 2020, 2011.03831.

[75]  P. Alam ‘W’ , 2021, Composites Engineering.

[76]  Kazuyuki Tanaka,et al.  Mean field analysis of reverse annealing for code-division multiple-access multiuser detection , 2020, Physical Review Research.

[77]  Umesh Vazirani,et al.  (Sub)Exponential advantage of adiabatic Quantum computation with no sign problem , 2020, STOC.

[78]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[79]  M. Hastings The Power of Adiabatic Quantum Computation with No Sign Problem , 2020, Quantum.