Omnipresent Maxwell's demons orchestrate information management in living cells

The development of synthetic biology calls for accurate understanding of the critical functions that allow construction and operation of a living cell. Besides coding for ubiquitous structures, minimal genomes encode a wealth of functions that dissipate energy in an unanticipated way. Analysis of these functions shows that they are meant to manage information under conditions when discrimination of substrates in a noisy background is preferred over a simple recognition process. We show here that many of these functions, including transporters and the ribosome construction machinery, behave as would behave a material implementation of the information‐managing agent theorized by Maxwell almost 150 years ago and commonly known as Maxwell's demon (MxD). A core gene set encoding these functions belongs to the minimal genome required to allow the construction of an autonomous cell. These MxDs allow the cell to perform computations in an energy‐efficient way that is vastly better than our contemporary computers.

[1]  H. Wieden,et al.  Taking a Step Back from Back-Translocation: an Integrative View of LepA/EF4's Cellular Function , 2017, Molecular and Cellular Biology.

[2]  C. Joo,et al.  RecA filament maintains structural integrity using ATP-driven internal dynamics , 2017, Science Advances.

[3]  K. Kruse,et al.  FtsZ filaments have the opposite kinetic polarity of microtubules , 2018, Proceedings of the National Academy of Sciences.

[4]  F. Cramer Biochemical correctness: Emil Fischer's lock and key hypothesis, a hundred years after — an essay , 1995 .

[5]  N. Craig,et al.  Gain-of-function mutations in TnsC, an ATP-dependent transposition protein that activates the bacterial transposon Tn7. , 1997, Genetics.

[6]  R. Landauer The physical nature of information , 1996 .

[7]  Anthony Maxwell,et al.  Crystal structure of the breakage–reunion domain of DNA gyrase , 1997, Nature.

[8]  C. Jain Role of ribosome assembly in Escherichia coli ribosomal RNA degradation , 2018, Nucleic acids research.

[9]  Antoine Danchin,et al.  Antifragility and Tinkering in Biology (and in Business) Flexibility Provides an Efficient Epigenetic Way to Manage Risk , 2011, Genes.

[10]  I. Sinning,et al.  The Escherichia coli SRP Receptor Forms a Homodimer at the Membrane. , 2018, Structure.

[11]  Jonathan T B Huang,et al.  Processive degradation of unstructured protein by Escherichia coli Lon occurs via the slow, sequential delivery of multiple scissile sites followed by rapid and synchronized peptide bond cleavage events. , 2013, Biochemistry.

[12]  J. M. Wood,et al.  Cardiolipin synthase A colocalizes with cardiolipin and osmosensing transporter ProP at the poles of Escherichia coli cells , 2018, Molecular microbiology.

[13]  K. C. Huang,et al.  RodZ modulates geometric localization of the bacterial actin MreB to regulate cell shape , 2017, Nature Communications.

[14]  J. Riordan,et al.  Regulation of Escherichia coli Pathogenesis by Alternative Sigma Factor N. , 2017, EcoSal Plus.

[15]  M. Dreyfus,et al.  Identification of the sites of action of SrmB, a DEAD‐box RNA helicase involved in Escherichia coli ribosome assembly , 2011, Molecular microbiology.

[16]  O. Danot How ‘arm-twisting’ by the inducer triggers activation of the MalT transcription factor, a typical signal transduction ATPase with numerous domains (STAND) , 2015, Nucleic acids research.

[17]  S. Lovett,et al.  Connecting Replication and Repair: YoaA, a Helicase-Related Protein, Promotes Azidothymidine Tolerance through Association with Chi, an Accessory Clamp Loader Protein , 2015, PLoS Genetics.

[18]  T. Steitz,et al.  The structure of LepA, the ribosomal back translocase , 2008, Proceedings of the National Academy of Sciences.

[19]  Hanna S. Yuan,et al.  Structural insights into RNA unwinding and degradation by RNase R , 2017, Nucleic acids research.

[20]  Steven M. Johnson,et al.  Requirement for binding multiple ATPs to convert a GroEL ring to the folding-active state , 2008, Proceedings of the National Academy of Sciences.

[21]  H. Taguchi,et al.  Electrostatic interactions between middle domain motif-1 and the AAA1 module of the bacterial ClpB chaperone are essential for protein disaggregation , 2018, The Journal of Biological Chemistry.

[22]  Information-to-free-energy conversion: Utilizing thermal fluctuations , 2013, Biophysics.

[23]  M. Seeger Membrane transporter research in times of countless structures. , 2017, Biochimica et biophysica acta. Biomembranes.

[24]  Milton H. Saier,et al.  The Transporter Classification Database (TCDB): recent advances , 2015, Nucleic Acids Res..

[25]  M. Kanemori,et al.  Two J domains ensure high cochaperone activity of DnaJ, Escherichia coli heat shock protein 40 , 2018, Journal of biochemistry.

[26]  W. Donachie FtsK: Maxwell's Demon? , 2002, Molecular cell.

[27]  Vandana Malhotra,et al.  Mycobacterium tuberculosis Protein Kinase K Enables Growth Adaptation through Translation Control , 2012, Journal of bacteriology.

[28]  S. Nath The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation. , 2016, Biophysical chemistry.

[29]  L. Pauling,et al.  THE NATURE OF THE INTERMOLECULAR FORCES OPERATIVE IN BIOLOGICAL PROCESSES. , 1940, Science.

[30]  Jue Chen,et al.  Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems , 2008, Microbiology and Molecular Biology Reviews.

[31]  Charles H. Bennett Logical depth and physical complexity , 1988 .

[32]  P. Redder,et al.  Bacterial versatility requires DEAD-box RNA helicases. , 2015, FEMS microbiology reviews.

[33]  A. Horovitz,et al.  Comparative genomic analysis of mollicutes with and without a chaperonin system , 2018, PloS one.

[34]  Rolf Landauer,et al.  Inadequacy of entropy and entropy derivatives in characterizing the steady state , 1975 .

[35]  F. Boccard,et al.  The MaoP/maoS Site-Specific System Organizes the Ori Region of the E. coli Chromosome into a Macrodomain , 2016, PLoS genetics.

[36]  When Maxwellian demon meets action at a distance: Comment on "Disentangling DNA molecules" by Alexander Vologodskii. , 2016, Physics of life reviews.

[37]  S. Kojima,et al.  HubP, a Polar Landmark Protein, Regulates Flagellar Number by Assisting in the Proper Polar Localization of FlhG in Vibrio alginolyticus , 2016, Journal of bacteriology.

[38]  R. Ryan,et al.  Cardiolipin and mitochondrial cristae organization. , 2017, Biochimica et biophysica acta. Biomembranes.

[39]  Lars V. Schäfer,et al.  Molecular Mechanism of ATP Hydrolysis in an ABC Transporter , 2018, ACS central science.

[40]  J. Hopfield Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[41]  B. Meier,et al.  A Small Helical Bundle Prepares Primer Synthesis by Binding Two Nucleotides that Enhance Sequence-Specific Recognition of the DNA Template , 2019, Cell.

[42]  J. Sengupta,et al.  Structural modules of the stress-induced protein HflX: an outlook on its evolution and biological role , 2018, Current Genetics.

[43]  D. Marinescu,et al.  Classical and Quantum Information , 2012 .

[44]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[45]  Ya Wen Maxwell's demon at work: Mitochondria, the organelles that convert information into energy? , 2018, Chronic diseases and translational medicine.

[46]  V. Lorenzo,et al.  ATP Binding to the σ54-Dependent Activator XylRTriggers a Protein Multimerization Cycle Catalyzed by UAS DNA , 1996, Cell.

[47]  G. Jensen,et al.  FtsEX-mediated regulation of the final stages of cell division reveals morphogenetic plasticity in Caulobacter crescentus , 2017, PLoS genetics.

[48]  Erin M. Langdon,et al.  A New Lens for RNA Localization: Liquid-Liquid Phase Separation. , 2018, Annual review of microbiology.

[49]  Marissa G. Viola,et al.  The Protein Chaperone ClpX Targets Native and Non-native Aggregated Substrates for Remodeling, Disassembly, and Degradation with ClpP , 2017, Front. Mol. Biosci..

[50]  Clemens Bechinger,et al.  Proliferation of anomalous symmetries in colloidal monolayers subjected to quasiperiodic light fields , 2010, Proceedings of the National Academy of Sciences.

[51]  R. Saxena,et al.  Crosstalk between DnaA Protein, the Initiator of Escherichia coli Chromosomal Replication, and Acidic Phospholipids Present in Bacterial Membranes , 2013, International journal of molecular sciences.

[52]  S. Shuman,et al.  Characterization of Lhr-Core DNA helicase and manganese- dependent DNA nuclease components of a bacterial gene cluster encoding nucleic acid repair enzymes , 2018, The Journal of Biological Chemistry.

[53]  D. Klostermeier Why Two? On the Role of (A-)Symmetry in Negative Supercoiling of DNA by Gyrase , 2018, International journal of molecular sciences.

[54]  A. E. Senior,et al.  The catalytic cycle of P‐glycoprotein , 1995, FEBS letters.

[55]  T. Mignot,et al.  MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility , 2018, Proceedings of the National Academy of Sciences.

[56]  A. Shiryayev On Tables of Random Numbers , 1993 .

[57]  A. Moya,et al.  Genome size reduction through multiple events of gene disintegration in Buchnera APS. , 2001, Trends in genetics : TIG.

[58]  B. Cooperman,et al.  Interrupted catalysis: the EF4 (LepA) effect on back translocation , 2010, Journal of molecular biology.

[59]  B. Frieden,et al.  Investigating Information Dynamics in Living Systems through the Structure and Function of Enzymes , 2016, PloS one.

[60]  E. Richet,et al.  MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP‐dependent transcriptional activator. , 1989, The EMBO journal.

[61]  A. Danchin,et al.  Life's demons: information and order in biology , 2011, EMBO reports.

[62]  L. Mai The Delphic boat: What genomes tell us , 2003 .

[63]  S. Radford,et al.  Dynamic action of the Sec machinery during initiation, protein translocation and termination , 2018, eLife.

[64]  F. Hartl,et al.  GroEL Ring Separation and Exchange in the Chaperonin Reaction , 2018, Cell.

[65]  Chris M. Brown,et al.  'Stop' in protein synthesis is modulated with exquisite subtlety by an extended RNA translation signal. , 2018, Biochemical Society transactions.

[66]  M. Nakayama,et al.  In Vitro Activity of Five Quinolones and Analysis of the Quinolone Resistance-Determining Regions of gyrA, gyrB, parC, and parE in Ureaplasma parvum and Ureaplasma urealyticum Clinical Isolates from Perinatal Patients in Japan , 2015, Antimicrobial Agents and Chemotherapy.

[67]  N. Craig,et al.  Analysis of gain-of-function mutants of an ATP-dependent regulator of Tn7 transposition. , 2001, Journal of molecular biology.

[68]  Eugenio Andrade,et al.  Protein Folding and Evolution are Driven by the Maxwell Demon Activity of Proteins , 2004, Acta biotheoretica.

[69]  E. Richet,et al.  Maltotriose is the inducer of the maltose regulon of Escherichia coli , 1987, Journal of bacteriology.

[70]  S. Lindquist,et al.  Hsp104, Hsp70, and Hsp40 A Novel Chaperone System that Rescues Previously Aggregated Proteins , 1998, Cell.

[71]  M. L. Greenberg,et al.  Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. , 2017, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[72]  Activation of the DnaK-ClpB Complex is Regulated by the Properties of the Bound Substrate , 2018, Scientific Reports.

[73]  G. Atkinson,et al.  Antibiotic resistance ABCF proteins reset the peptidyl transferase centre of the ribosome to counter translational arrest , 2018, Nucleic acids research.

[74]  Yo-hei Watanabe,et al.  ClpB chaperone passively threads soluble denatured proteins through its central pore , 2014, Genes to cells : devoted to molecular & cellular mechanisms.

[75]  H. Ordonez,et al.  Structure of mycobacterial 3′-to-5′ RNA:DNA helicase Lhr bound to a ssDNA tracking strand highlights distinctive features of a novel family of bacterial helicases , 2017, Nucleic acids research.

[76]  Andrija Finka,et al.  Experimental Milestones in the Discovery of Molecular Chaperones as Polypeptide Unfolding Enzymes. , 2016, Annual review of biochemistry.

[77]  T. Arányi,et al.  Boosted coupling of ATP hydrolysis to substrate transport upon cooperative estradiol‐17‐β‐D‐glucuronide binding in a Drosophila ATP binding cassette type‐C transporter , 2017, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[78]  Guillaume Thibault,et al.  The AAA+ superfamily of functionally diverse proteins , 2008, Genome Biology.

[79]  A. Kuhn,et al.  Large conformational changes of a highly dynamic pre-protein binding domain in SecA , 2018, Communications Biology.

[80]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[81]  A. Rex,et al.  Maxwell's demon 2: entropy, classical and quantum information, computing , 2002 .

[82]  T. Ando,et al.  Dynamic structural states of ClpB involved in its disaggregation function , 2018, Nature Communications.

[83]  S. Elderkin,et al.  Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochemical action. , 2001, Genes & development.

[84]  D. Townsend,et al.  Characterization of the ATPase activity of human ATP-binding cassette transporter-2 (ABCA2). , 2005, In vivo.

[85]  Chien-Sheng Chen,et al.  Escherichia coli Proteome Microarrays Identified the Substrates of ClpYQ Protease* , 2016, Molecular & Cellular Proteomics.

[86]  K. E.,et al.  The Theory of Heat , 1929, Nature.

[87]  K. Satyshur,et al.  Structure-specific DNA replication-fork recognition directs helicase and replication restart activities of the PriA helicase , 2018, Proceedings of the National Academy of Sciences.

[88]  J. Martín,et al.  LAL Regulators SCO0877 and SCO7173 as Pleiotropic Modulators of Phosphate Starvation Response and Actinorhodin Biosynthesis in Streptomyces coelicolor , 2012, PloS one.

[89]  The ribosome modulates the structural dynamics of the conserved GTPase HflX and triggers tight nucleotide binding. , 2012, Biochimie.

[90]  H. Kaback,et al.  pKa of Glu325 in LacY , 2017, Proceedings of the National Academy of Sciences of the United States of America.

[91]  E. Werner,et al.  Molecular structural diversity of mitochondrial cardiolipins , 2018, Proceedings of the National Academy of Sciences.

[92]  Y. Brun,et al.  Diversity Takes Shape: Understanding the Mechanistic and Adaptive Basis of Bacterial Morphology , 2016, PLoS biology.

[93]  M. Dreyfus,et al.  Cold adaptation in DEAD-box proteins. , 2010, Biochemistry.

[94]  R. Tampé,et al.  Ribosome recycling is coordinated by processive events in two asymmetric ATP sites of ABCE1 , 2018, Life Science Alliance.

[95]  S. Wilkens Structure and mechanism of ABC transporters , 2015, F1000prime reports.

[96]  J. Mrázek,et al.  Novel DNA Binding and Regulatory Activities for σ54 (RpoN) in Salmonella enterica Serovar Typhimurium 14028s , 2017, Journal of bacteriology.

[97]  A. Danchin Myopic selection of novel information drives evolution. , 2009, Current opinion in biotechnology.

[98]  C. Gross,et al.  Global analysis of translation termination in E. coli , 2017, PLoS genetics.

[99]  L. Gierasch,et al.  Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones , 2018, The Journal of Biological Chemistry.

[100]  W. Margolin,et al.  Gain‐of‐function variants of FtsA form diverse oligomeric structures on lipids and enhance FtsZ protofilament bundling , 2018, Molecular microbiology.

[101]  V. Lorenzo,et al.  Cooperative amino acid changes shift the response of the σ54-dependent regulator XylR from natural m-xylene towards xenobiotic 2,4-dinitrotoluene , 2011 .

[102]  D. G. Gibson,et al.  Design and synthesis of a minimal bacterial genome , 2016, Science.

[103]  Terry K. Smith,et al.  Cardiolipin synthase is required for Streptomyces coelicolor morphogenesis , 2012, Molecular microbiology.

[104]  M. Zółkiewski,et al.  Interaction of substrate-mimicking peptides with the AAA+ ATPase ClpB from Escherichia coli. , 2018, Archives of biochemistry and biophysics.

[105]  D. Svergun,et al.  Conformational States of ABC Transporter MsbA in a Lipid Environment Investigated by Small-Angle Scattering Using Stealth Carrier Nanodiscs. , 2018, Structure.

[106]  Fernando H. Ramírez-Guadiana,et al.  Evidence that regulation of intramembrane proteolysis is mediated by substrate gating during sporulation in Bacillus subtilis , 2018, PLoS genetics.

[107]  Antoine Danchin,et al.  Unknown unknowns: essential genes in quest for function , 2016, Microbial biotechnology.

[108]  Markus Schneider,et al.  Chemical Cross-Linking Enables Drafting ClpXP Proximity Maps and Taking Snapshots of In Situ Interaction Networks. , 2019, Cell chemical biology.

[109]  G. King,et al.  Single-molecule observation of nucleotide induced conformational changes in basal SecA-ATP hydrolysis , 2018, Science Advances.

[110]  Daniel F. Jarosz,et al.  More than Just a Phase: Prions at the Crossroads of Epigenetic Inheritance and Evolutionary Change. , 2018, Journal of molecular biology.

[111]  J. Monod,et al.  Bacterial permeases. , 1957, Bacteriological reviews.

[112]  S. Harvey,et al.  The entropic force generated by intrinsically disordered segments tunes protein function , 2018, Nature.

[113]  Stephen Berard,et al.  Implications of Historical Trends in the Electrical Efficiency of Computing , 2011, IEEE Annals of the History of Computing.

[114]  K. Ishibashi,et al.  The evolutionary aspects of aquaporin family. , 2011, American journal of physiology. Regulatory, integrative and comparative physiology.

[115]  A. Goldberg,et al.  The energy utilized in protein breakdown by the ATP-dependent protease (La) from Escherichia coli. , 1987, The Journal of biological chemistry.

[116]  Sequence determinants of specific pattern-recognition of bacterial ligands by the NAIP–NLRC4 inflammasome , 2018, Cell Discovery.

[117]  B. Liu,et al.  Translation Elongation Factor 4 (LepA) Contributes to Tetracycline Susceptibility by Stalling Elongating Ribosomes , 2018, Antimicrobial Agents and Chemotherapy.

[118]  A. Danchin Bacteria as computers making computers , 2008, FEMS microbiology reviews.

[119]  Nieng Yan,et al.  Structural Biology of the Major Facilitator Superfamily Transporters. , 2015, Annual review of biophysics.

[120]  K K Poon,et al.  Roles of Glucitol in the GutR-mediated Transcription Activation Process in Bacillus subtilis , 2001, The Journal of Biological Chemistry.

[121]  A. Danchin Coping with inevitable accidents in metabolism , 2016, Microbial biotechnology.

[122]  Jong-Tae Park,et al.  Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli , 2011, Journal of bacteriology.

[123]  D. Wigley,et al.  DNA translocation mechanism of an XPD family helicase , 2018, eLife.

[124]  Jeffrey N. Carey,et al.  The ATPase activity of E. coli RecA prevents accumulation of toxic complexes formed by erroneous binding to undamaged double stranded DNA , 2018, bioRxiv.

[125]  Justin M. Miller,et al.  Phylogenetic analysis predicts structural divergence for proteobacterial ClpC proteins. , 2018, Journal of structural biology.

[126]  Mario J. Avellaneda,et al.  Protein Folding Mediated by Trigger Factor and Hsp70: New Insights from Single-Molecule Approaches. , 2017, Journal of molecular biology.

[127]  M. Feig,et al.  Interaction of intramembrane metalloprotease SpoIVFB with substrate Pro-σK , 2017, Proceedings of the National Academy of Sciences.

[128]  B. Luisi,et al.  Structural insights into RapZ-mediated regulation of bacterial amino-sugar metabolism , 2017, Nucleic acids research.

[129]  Carlos Bustamante,et al.  ClpX(P) Generates Mechanical Force to Unfold and Translocate Its Protein Substrates , 2011, Cell.

[130]  Antoine Danchin,et al.  Information of the chassis and information of the program in synthetic cells , 2009, Systems and Synthetic Biology.

[131]  K. Liliom,et al.  Nucleotides and transported substrates modulate different steps of the ATPase catalytic cycle of MRP1 multidrug transporter. , 2004, The Biochemical journal.

[132]  A. Barducci,et al.  Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins , 2018, Nature Chemical Biology.

[133]  U. Bläsi,et al.  Binding of the 5'-Triphosphate End of mRNA to the γ-Subunit of Translation Initiation Factor 2 of the Crenarchaeon Sulfolobus solfataricus. , 2015, Journal of molecular biology.

[134]  N. Cozzarelli,et al.  Topoisomerase Action on Short DNA Duplexes Reveals Requirements for Gate and Transfer DNA Segments* , 2006, Journal of Biological Chemistry.

[135]  Antoine Danchin,et al.  Natural selection and immortality , 2008, Biogerontology.

[136]  Kerwyn Casey Huang,et al.  How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction , 2018, Cell.

[137]  S. Wickner,et al.  Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling , 2018, The Journal of Biological Chemistry.

[138]  M. Ruer,et al.  ATPase and Protease Domain Movements in the Bacterial AAA+ Protease FtsH Are Driven by Thermal Fluctuations. , 2018, Journal of molecular biology.

[139]  Antoine Danchin,et al.  Scaling up synthetic biology: Do not forget the chassis , 2012, FEBS letters.

[140]  M. Ehrenberg,et al.  A conformational switch in initiation factor 2 controls the fidelity of translation initiation in bacteria , 2017, Nature Communications.

[141]  G. Laloux,et al.  How do bacteria localize proteins to the cell pole? , 2014, Journal of Cell Science.

[142]  J. Shorter,et al.  Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104 , 2017, Science.

[143]  T. Baker,et al.  Hinge-Linker Elements in the AAA+ Protein Unfoldase ClpX Mediate Intersubunit Communication, Assembly, and Mechanical Activity. , 2018, Biochemistry.

[144]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[145]  Jimin Wang Nucleotide-dependent domain motions within rings of the RecA/AAA(+) superfamily. , 2004, Journal of structural biology.

[146]  Justin M. Miller,et al.  Escherichia coli ClpB is a non-processive polypeptide translocase , 2015, The Biochemical journal.

[147]  C. Cole,et al.  The Universal Turing Machine: A Half-Century Survey , 1996, Inf. Process. Manag..

[148]  David J. Schwab,et al.  Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks , 2015, bioRxiv.

[149]  Daniel M. Stoebel,et al.  The Cost of Expression of Escherichia coli lac Operon Proteins Is in the Process, Not in the Products , 2008, Genetics.

[150]  P. Graumann,et al.  Single-Molecule Tracking of DNA Translocases in Bacillus subtilis Reveals Strikingly Different Dynamics of SftA, SpoIIIE, and FtsA , 2018, Applied and Environmental Microbiology.

[151]  E. Koonin,et al.  STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. , 2004, Journal of molecular biology.

[152]  Antoine Danchin,et al.  No wisdom in the crowd: genome annotation in the era of big data – current status and future prospects , 2018, Microbial biotechnology.

[153]  A. Houdusse,et al.  Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity , 2017, Small GTPases.

[154]  S. Ball,et al.  Role of the Escherichia coli glgX Gene in Glycogen Metabolism , 2005, Journal of bacteriology.

[155]  G. Unden,et al.  Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation. , 1998, European journal of biochemistry.

[156]  B. Luisi,et al.  Analysis of the natively unstructured RNA/protein-recognition core in the Escherichia coli RNA degradosome and its interactions with regulatory RNA/Hfq complexes , 2017, Nucleic acids research.

[157]  E. Westhof,et al.  An integrated, structure- and energy-based view of the genetic code , 2016, Nucleic acids research.

[158]  Gerald R. Smith,et al.  The RecB helicase-nuclease tether mediates Chi hotspot control of RecBCD enzyme , 2018, Nucleic acids research.

[159]  M. Wahl,et al.  Crystal Structure of the Escherichia coli DExH-Box NTPase HrpB. , 2018, Structure.

[160]  D. Vidal-Ingigliardi,et al.  Wheel of Life, Wheel of Death: A Mechanistic Insight into Signaling by STAND Proteins. , 2009, Structure.

[161]  Daniel N. Wilson,et al.  Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR , 2018, Proceedings of the National Academy of Sciences.

[162]  Fatema Z. Chowdhury,et al.  Glycogen and Maltose Utilization by Escherichia coli O157:H7 in the Mouse Intestine , 2008, Infection and Immunity.

[163]  G. Lorimer,et al.  Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent. , 1990, Biochemistry.

[164]  H. Koch,et al.  Co‐translational protein targeting in bacteria , 2018, FEMS microbiology letters.

[165]  T. Abe,et al.  The ribosomal stalk protein is crucial for the action of the conserved ATPase ABCE1 , 2018, Nucleic acids research.

[166]  T. Baker,et al.  N domain of the Lon AAA+ protease controls assembly and substrate choice , 2019, Protein science : a publication of the Protein Society.

[167]  P. Linsdell Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure , 2018, Channels.

[168]  V. de Lorenzo,et al.  Integration host factor suppresses promiscuous activation of the sigma 54-dependent promoter Pu of Pseudomonas putida. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[169]  J. H. Hateren What does Maxwell's demon want from life? When information becomes functional and physical , 2014, 1407.8314.

[170]  A. Derouiche,et al.  Evolution and tinkering: what do a protein kinase, a transcriptional regulator and chromosome segregation/cell division proteins have in common? , 2015, Current Genetics.

[171]  J. Frank,et al.  The ABC-F protein EttA gates ribosome entry into the translation elongation cycle , 2014, Nature Structural &Molecular Biology.

[172]  Harland E Brandon,et al.  The conserved GTPase HflX is a ribosome splitting factor that binds to the E-site of the bacterial ribosome , 2016, Nucleic acids research.

[173]  J. Monod,et al.  [Galactoside-permease of Escherichia coli]. , 1956, Annales de l'Institut Pasteur.

[174]  S. Cusack,et al.  The physiological target for LeuRS translational quality control is norvaline , 2014, The EMBO journal.

[175]  S. Lin-Chao,et al.  The Protein Interaction of RNA Helicase B (RhlB) and Polynucleotide Phosphorylase (PNPase) Contributes to the Homeostatic Control of Cysteine in Escherichia coli* , 2015, The Journal of Biological Chemistry.

[176]  A. Gittis,et al.  Kinetics and Thermodynamics of DbpA Protein’s C-Terminal Domain Interaction with RNA , 2017, ACS omega.

[177]  K. Locher Mechanistic diversity in ATP-binding cassette (ABC) transporters , 2016, Nature Structural &Molecular Biology.

[178]  H. Buc,et al.  Stabilization of a phosphorylase b active conformation by hydrophobic solvents , 1978, FEBS letters.

[179]  S. Horinouchi,et al.  AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. , 2007, Journal of molecular biology.

[180]  M. Deutscher,et al.  The Helicase Activity of Ribonuclease R Is Essential for Efficient Nuclease Activity* , 2015, The Journal of Biological Chemistry.

[181]  A subfamily of MalT-related ATP-dependent regulators in the LuxR family. , 1999, Microbiology.

[182]  K. Funo,et al.  Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system , 2017, Nature Communications.

[183]  F. Cramer,et al.  Fidelity in the aminoacylation of tRNA(Val) with hydroxy analogues of valine, leucine, and isoleucine by valyl-tRNA synthetases from Saccharomyces cerevisiae and Escherichia coli. , 1990, Biochemistry.

[184]  J. Thevelein,et al.  Extracellular maltotriose hydrolysis by Saccharomyces cerevisiae cells lacking the AGT1 permease , 2018, Letters in applied microbiology.

[185]  A. Danchin,et al.  Frustration : Physico-chemical Prerequisites for the Construction of a Synthetic Cell , 2009 .

[186]  S. Schroeder Challenges and approaches to predicting RNA with multiple functional structures , 2018, RNA.

[187]  J. Radolf,et al.  HrpA, an RNA Helicase Involved in RNA Processing, Is Required for Mouse Infectivity and Tick Transmission of the Lyme Disease Spirochete , 2013, PLoS pathogens.

[188]  A. Albertini,et al.  Interplay of CodY and ScoC in the Regulation of Major Extracellular Protease Genes of Bacillus subtilis , 2016, Journal of bacteriology.

[189]  Wei Cheng,et al.  Revisiting the Central Dogma One Molecule at a Time , 2011, Cell.

[190]  T. D. Schneider,et al.  Information content of individual genetic sequences. , 1997, Journal of theoretical biology.

[191]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[192]  Flemming G. Hansen,et al.  The DnaA Tale , 2018, Front. Microbiol..

[193]  M. Rodnina,et al.  Dynamics of ribosomes and release factors during translation termination in E. coli , 2018, bioRxiv.

[194]  Yusuke Nakamura,et al.  Stimulation of the ATPase activity of Hsp90 by zerumbone modification of its cysteine residues destabilizes its clients and causes cytotoxicity. , 2018, The Biochemical journal.

[195]  E. Richet,et al.  Conserved Motifs Involved in ATP Hydrolysis by MalT, a Signal Transduction ATPase with Numerous Domains from Escherichia coli , 2010, Journal of bacteriology.

[196]  L. Jespersen,et al.  The Effect of Selected Synbiotics on Microbial Composition and Short-Chain Fatty Acid Production in a Model System of the Human Colon , 2012, PloS one.

[197]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[198]  F. Narberhaus,et al.  An Integrated Proteomic Approach Uncovers Novel Substrates and Functions of the Lon Protease in Escherichia coli , 2018, Proteomics.

[199]  S. Thirup,et al.  E. coli elongation factor Tu bound to a GTP analogue displays an open conformation equivalent to the GDP-bound form , 2018, Nucleic acids research.

[200]  Nan Zhang,et al.  The bacterial enhancer-dependent RNA polymerase , 2016, The Biochemical journal.

[201]  Antoine Danchin,et al.  A phylogenetic view of bacterial ribonucleases. , 2009, Progress in molecular biology and translational science.

[202]  R. Tampé,et al.  Control of mRNA Translation by Versatile ATP-Driven Machines. , 2019, Trends in biochemical sciences.

[203]  Charles H. Bennett Notes on the history of reversible computation , 2000, IBM J. Res. Dev..

[204]  R. Bundschuh,et al.  The conserved GTPase LepA contributes mainly to translation initiation in Escherichia coli , 2014, Nucleic acids research.

[205]  R. Zhou,et al.  Features of Pro-σK Important for Cleavage by SpoIVFB, an Intramembrane Metalloprotease , 2013, Journal of bacteriology.

[206]  J. Repar,et al.  RecF recombination pathway in Escherichia coli cells lacking RecQ, UvrD and HelD helicases. , 2012, DNA repair.

[207]  R. Dixon,et al.  The Role of Bacterial Enhancer Binding Proteins as Specialized Activators of σ54-Dependent Transcription , 2012, Microbiology and Molecular Reviews.

[208]  C. Adami,et al.  Evolution of Biological Complexity , 2000, Proc. Natl. Acad. Sci. USA.

[209]  B. Görke,et al.  Interaction of lipoprotein QseG with sensor kinase QseE in the periplasm controls the phosphorylation state of the two-component system QseE/QseF in Escherichia coli , 2018, PLoS genetics.

[210]  I. Walker Maxwell's demon in biological systems , 1976, Acta biotheoretica.

[211]  J. Hsu,et al.  The ATP-binding motif in AcoK is required for regulation of acetoin catabolism in Klebsiella pneumoniae CG43. , 2008, Biochemical and biophysical research communications.

[212]  Antoine Danchin,et al.  Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. , 2014, FEMS microbiology reviews.

[213]  M. Kahn,et al.  Lactose inhibits the growth of Rhizobium meliloti cells that contain an actively expressed Escherichia coli lactose operon , 1984, Journal of bacteriology.

[214]  J. Puglisi,et al.  Post-termination Ribosome Intermediate Acts as the Gateway to Ribosome Recycling. , 2017, Cell reports.

[215]  E. Richet,et al.  How integration of positive and negative regulatory signals by a STAND signaling protein depends on ATP hydrolysis. , 2007, Molecular cell.

[216]  Anders Sandberg Energetics of the brain and AI , 2016, ArXiv.

[217]  V. de Lorenzo,et al.  ATP binding to the sigma 54-dependent activator XylR triggers a protein multimerization cycle catalyzed by UAS DNA. , 1996, Cell.