Leveraging Cognitive Features for Sentiment Analysis

Sentiments expressed in user-generated short text and sentences are nuanced by subtleties at lexical, syntactic, semantic and pragmatic levels. To address this, we propose to augment traditional features used for sentiment analysis and sarcasm detection, with cognitive features derived from the eye-movement patterns of readers. Statistical classification using our enhanced feature set improves the performance (F-score) of polarity detection by a maximum of 3.7% and 9.3% on two datasets, over the systems that use only traditional features. We perform feature significance analysis, and experiment on a held-out dataset, showing that cognitive features indeed empower sentiment analyzers to handle complex constructs.

[1]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[2]  Sigrid Klerke,et al.  Improving sentence compression by learning to predict gaze , 2016, NAACL.

[3]  Pushpak Bhattacharyya,et al.  Measuring Sentiment Annotation Complexity of Text , 2014, ACL.

[4]  Harith Alani,et al.  Alleviating Data Sparsity for Twitter Sentiment Analysis , 2012, #MSM.

[5]  K. Rayner,et al.  Eye movements in reading: Psycholinguistic studies. , 1994 .

[6]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[7]  Ellen Riloff,et al.  Sarcasm as Contrast between a Positive Sentiment and Negative Situation , 2013, EMNLP.

[8]  Diego Reforgiato Recupero,et al.  Sentiment Analysis: Adjectives and Adverbs are Better than Adjectives Alone , 2007, ICWSM.

[9]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[10]  Pushpak Bhattacharyya,et al.  Harnessing WordNet Senses for Supervised Sentiment Classification , 2011, EMNLP.

[11]  Anders Søgaard,et al.  Using reading behavior to predict grammatical functions , 2015 .

[12]  Xu Ling,et al.  Topic sentiment mixture: modeling facets and opinions in weblogs , 2007, WWW '07.

[13]  Tejashri Inadarchand Jain,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2010 .

[14]  Cícero Nogueira dos Santos,et al.  Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts , 2014, COLING.

[15]  Clement T. Yu,et al.  The effect of negation on sentiment analysis and retrieval effectiveness , 2009, CIKM.

[16]  Pushpak Bhattacharyya,et al.  Predicting Readers' Sarcasm Understandability by Modeling Gaze Behavior , 2016, AAAI.

[17]  Pushpak Bhattacharyya,et al.  Detecting Domain Dedicated Polar Words , 2013, IJCNLP.

[18]  Kentaro Inui,et al.  Dependency Tree-based Sentiment Classification using CRFs with Hidden Variables , 2010, NAACL.

[19]  Janyce Wiebe,et al.  Subjectivity Word Sense Disambiguation , 2009, EMNLP.

[20]  Pushpak Bhattacharyya,et al.  Detecting Turnarounds in Sentiment Analysis: Thwarting , 2013, ACL.

[21]  Gholamreza Haffari,et al.  The Haves and the Have-Nots: Leveraging Unlabelled Corpora for Sentiment Analysis , 2013, ACL.

[22]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[23]  Pushpak Bhattacharyya,et al.  Automatically Predicting Sentence Translation Difficulty , 2013, ACL.

[24]  Navneet Kaur,et al.  Opinion mining and sentiment analysis , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

[25]  Erik Cambria,et al.  Sentic patterns: Dependency-based rules for concept-level sentiment analysis , 2014, Knowl. Based Syst..

[26]  Vincent Ng,et al.  Examining the Role of Linguistic Knowledge Sources in the Automatic Identification and Classification of Reviews , 2006, ACL.

[27]  Reinhold Kliegl,et al.  Determinants of Scanpath Regularity in Reading , 2015, Cogn. Sci..

[28]  Antal van den Bosch,et al.  The perfect solution for detecting sarcasm in tweets #not , 2013, WASSA@NAACL-HLT.

[29]  Yulan He,et al.  Joint sentiment/topic model for sentiment analysis , 2009, CIKM.

[30]  Mário J. Silva,et al.  Clues for detecting irony in user-generated contents: oh...!! it's "so easy" ;-) , 2009, TSA@CIKM.

[31]  Owen Rambow,et al.  Sentiment Analysis of Twitter Data , 2011 .

[32]  Andreas Bulling,et al.  EyeTab: model-based gaze estimation on unmodified tablet computers , 2014, ETRA.

[33]  Lei Zhang,et al.  A Survey of Opinion Mining and Sentiment Analysis , 2012, Mining Text Data.

[34]  Johanna D. Moore,et al.  Twitter Sentiment Analysis: The Good the Bad and the OMG! , 2011, ICWSM.

[35]  David M. Pennock,et al.  Mining the peanut gallery: opinion extraction and semantic classification of product reviews , 2003, WWW '03.

[36]  Pushpak Bhattacharyya,et al.  More than meets the eye: Study of Human Cognition in Sense Annotation , 2013, NAACL.

[37]  Shravan Vasishth,et al.  What is the scanpath signature of syntactic reanalysis , 2011 .

[38]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[39]  Bing Liu,et al.  Mining Opinions in Comparative Sentences , 2008, COLING.

[40]  Daisuke Ikeda,et al.  Learning to Shift the Polarity of Words for Sentiment Classification , 2008, IJCNLP.

[41]  Xiaoyan Zhu,et al.  Sentiment Analysis with Global Topics and Local Dependency , 2010, AAAI.

[42]  Pushpak Bhattacharyya,et al.  A cognitive study of subjectivity extraction in sentiment annotation , 2014, WASSA@ACL.

[43]  Christiane Fellbaum,et al.  The Role of Adverbs in Sentiment Analysis , 2014 .

[44]  Raja Parasuraman,et al.  Neuroergonomics: The Brain at Work , 2006 .

[45]  Junlan Feng,et al.  Robust Sentiment Detection on Twitter from Biased and Noisy Data , 2010, COLING.

[46]  Timothy W. Finin,et al.  Delta TFIDF: An Improved Feature Space for Sentiment Analysis , 2009, ICWSM.

[47]  Horacio Saggion,et al.  Modelling Sarcasm in Twitter, a Novel Approach , 2014, WASSA@ACL.

[48]  Rada Mihalcea,et al.  Word Sense and Subjectivity , 2006, ACL.

[49]  K. Rayner,et al.  Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity , 1986, Memory & cognition.

[50]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[51]  Diana Maynard,et al.  Who cares about Sarcastic Tweets? Investigating the Impact of Sarcasm on Sentiment Analysis. , 2014, LREC.

[52]  Pushpak Bhattacharyya,et al.  Harnessing Context Incongruity for Sarcasm Detection , 2015, ACL.

[53]  R. P. Fishburne,et al.  Derivation of New Readability Formulas (Automated Readability Index, Fog Count and Flesch Reading Ease Formula) for Navy Enlisted Personnel , 1975 .

[54]  Nigel Collier,et al.  Sentiment Analysis using Support Vector Machines with Diverse Information Sources , 2004, EMNLP.