Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus)

[1]  J. Hemmer-Hansen,et al.  Adaptive divergence in a high gene flow environment: Hsc70 variation in the European flounder (Platichthys flesus L.) , 2007, Heredity.

[2]  J. Hemmer-Hansen,et al.  Adaptive differences in gene expression in European flounder (Platichthys flesus) , 2007, Molecular ecology.

[3]  J. Hemmer-Hansen,et al.  Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder (Platichthys flesus L.) , 2007, Molecular ecology.

[4]  W. Ge,et al.  Positive feedback of hepatic angiotensinogen expression in silver sea bream (Sparus sarba) , 2007, Molecular and Cellular Endocrinology.

[5]  L. Bernatchez,et al.  The transcriptomics of ecological convergence between 2 limnetic coregonine fishes (Salmonidae). , 2006, Molecular biology and evolution.

[6]  S. Munch,et al.  Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation , 2006 .

[7]  N. Woo,et al.  Differential status of the renin-angiotensin system of silver sea bream (Sparus sarba) in different salinities. , 2006, General and comparative endocrinology.

[8]  P. Schulte,et al.  Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus , 2006, Journal of Experimental Biology.

[9]  T. Mitchell-Olds,et al.  Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis , 2006, Nature.

[10]  P. Schulte,et al.  Reciprocal expression of gill Na+/K+-ATPaseα -subunit isoforms α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance , 2006, Journal of Experimental Biology.

[11]  Jonathan P. Good,et al.  The effects of freshwater to seawater transfer on circulating levels of angiotensin II, C-type natriuretic peptide and arginine vasotocin in the euryhaline elasmobranch, Carcharhinus leucas. , 2006, General and comparative endocrinology.

[12]  H. Beug,et al.  Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis. , 2006, Blood.

[13]  A. Whitehead,et al.  Neutral and adaptive variation in gene expression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Duvernell,et al.  Microsatellite analysis of the phylogeography, Pleistocene history and secondary contact hypotheses for the killifish, Fundulus heteroclitus , 2006, Molecular ecology.

[15]  K. Johannesson,et al.  Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. , 2006, Molecular ecology.

[16]  P. Schulte,et al.  Reciprocal expression of gill Na+/K+-ATPase alpha-subunit isoforms alpha1a and alpha1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. , 2006, The Journal of experimental biology.

[17]  M Madan Babu,et al.  Adaptive evolution by optimizing expression levels in different environments. , 2006, Trends in microbiology.

[18]  Henrik Mosegaard,et al.  ENVIRONMENTAL CORRELATES OF POPULATION DIFFERENTIATION IN ATLANTIC HERRING , 2005, Evolution; international journal of organic evolution.

[19]  G. Carvalho,et al.  Macro- and micro-geographic variation in pantophysin (PanI) allele frequencies in NE Atlantic cod Gadus morhua , 2005 .

[20]  Dieter Jahn,et al.  Crystal structure of 5‐aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans , 2005, The EMBO journal.

[21]  D. Bekkevold,et al.  Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea , 2005, Molecular ecology.

[22]  P. Schulte,et al.  Intraspecific variation in gene expression after seawater transfer in gills of the euryhaline killifish Fundulus heteroclitus. , 2005, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[23]  Rachel B. Brem,et al.  The landscape of genetic complexity across 5,700 gene expression traits in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  K. Choe,et al.  The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. , 2005, Physiological reviews.

[25]  R. Weber,et al.  Functional adaptation and its molecular basis in vertebrate hemoglobins, neuroglobins and cytoglobins , 2004, Respiratory Physiology & Neurobiology.

[26]  T. Kawecki,et al.  Conceptual issues in local adaptation , 2004 .

[27]  N. Woo,et al.  Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). , 2004, American journal of physiology. Regulatory, integrative and comparative physiology.

[28]  E. Nielsen,et al.  Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea , 2004, Molecular ecology.

[29]  M. Kubista,et al.  Properties of the reverse transcription reaction in mRNA quantification. , 2004, Clinical chemistry.

[30]  Daniel J. Picard,et al.  Variation in gene expression in response to stress in two populations of Fundulus heteroclitus. , 2004, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[31]  Jesper Givskov Sørensen,et al.  The evolutionary and ecological role of heat shock proteins , 2003 .

[32]  E. Nielsen,et al.  Evidence of a hybrid‐zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis , 2003, Molecular ecology.

[33]  R. Stoughton,et al.  Genetics of gene expression surveyed in maize, mouse and man , 2003, Nature.

[34]  N. Stenseth,et al.  Fine‐scaled geographical population structuring in a highly mobile marine species: the Atlantic cod , 2003, Molecular ecology.

[35]  Ulf Dieckmann,et al.  Speciation along environmental gradients , 2003, Nature.

[36]  G. Pogson,et al.  Natural selection and the genetic differentiation of coastal and Arctic populations of the Atlantic cod in northern Norway: a test involving nucleotide sequence variation at the pantophysin (PanI) locus , 2002, Molecular ecology.

[37]  G. Churchill,et al.  Variation in gene expression within and among natural populations , 2002, Nature Genetics.

[38]  F. Jensen,et al.  Physiological impact of salinity increase at organism and red blood cell levels in the European flounder (Platichthys flesus) , 2002 .

[39]  P. Winsor,et al.  On the influence of the freshwater supply on the Baltic Sea mean salinity , 2002 .

[40]  O. Hjerne,et al.  Reproductive success in relation to salinity for three flatfish species, dab (Limanda limanda), plaice (Pleuronectes platessa), and flounder (Pleuronectes flesus), in the brackish water Baltic Sea , 2002 .

[41]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[42]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[43]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[44]  DW J.A. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals , 2000 .

[45]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[46]  R. Waples Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species , 1998 .

[47]  A. Nissling,et al.  Salinity requirements for successful spawning of Baltic and Belt Sea cod and the potential for cod stock interactions in the Baltic Sea , 1997 .

[48]  F. Jakobsen The major inflow to the Baltic Sea during January 1993 , 1995 .

[49]  S. Björck A review of the history of the Baltic Sea, 13.0-8.0 ka BP , 1995 .

[50]  D. Skibinski,et al.  A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes , 1994 .