Automatic Detection of Filters in Images with Gaussian Noise Using Independent Component Analysis

In this article we present the results of a study carried out using the popular fastica algorithm applied to the detection of filters in natural images in gray-scale, contaminated with gaussian noise. The detection of filters has been accomplished by using the statistical distribution measures kurtosis and skewness.

[1]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[2]  Erkki Oja,et al.  Sparse Code Shrinkage: Denoising by Nonlinear Maximum Likelihood Estimation , 1998, NIPS.

[3]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[4]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[5]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[6]  Christian Jutten,et al.  Detection de grandeurs primitives dans un message composite par une architecture de calcul neuromime , 1985 .

[7]  Jonathan C. Horton The visual neurosciences, volume I and II , 2004 .

[8]  Aapo Hyvärinen,et al.  Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Likelihood Estimation , 1999, Neural Computation.

[9]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[10]  Javier González Jiménez,et al.  Visión por computador , 1999 .

[11]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[12]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[13]  Yan Yang,et al.  Image Denoising by Sparse Code Shrinkage , 2009, 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing.

[14]  Gonzalo Pajares Martinsanz,et al.  Visión por computador: imágenes digitales y aplicaciones , 2001 .

[15]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..