A Nearly-linear Time Algorithm for Submodular Maximization with a Knapsack Constraint

We consider the problem of maximizing a monotone submodular function subject to a knapsack constraint. Our main contribution is an algorithm that achieves a nearly-optimal, $1 - 1/e - \epsilon$ approximation, using $(1/\epsilon)^{O(1/\epsilon^4)} n \log^2{n}$ function evaluations and arithmetic operations. Our algorithm is impractical but theoretically interesting, since it overcomes a fundamental running time bottleneck of the multilinear extension relaxation framework. This is the main approach for obtaining nearly-optimal approximation guarantees for important classes of constraints but it leads to $\Omega(n^2)$ running times, since evaluating the multilinear extension is expensive. Our algorithm maintains a fractional solution with only a constant number of entries that are strictly fractional, which allows us to overcome this obstacle.

[1]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001, JACM.

[2]  Monika Henzinger,et al.  Randomized dynamic graph algorithms with polylogarithmic time per operation , 1995, STOC '95.

[3]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[4]  Yuichi Yoshida,et al.  Maximizing a Monotone Submodular Function with a Bounded Curvature under a Knapsack Constraint , 2016, SIAM J. Discret. Math..

[5]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[6]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[7]  Hui Lin,et al.  Multi-document Summarization via Budgeted Maximization of Submodular Functions , 2010, NAACL.

[8]  Hadas Shachnai,et al.  Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints , 2013, Math. Oper. Res..

[9]  Jan Vondrák,et al.  Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[10]  L. Wolsey Maximising Real-Valued Submodular Functions: Primal and Dual Heuristics for Location Problems , 1982, Math. Oper. Res..

[11]  Jan Vondrák,et al.  Fast algorithms for maximizing submodular functions , 2014, SODA.

[12]  Tim Roughgarden,et al.  Revenue submodularity , 2009, EC '09.

[13]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[14]  Joseph Naor,et al.  Submodular Maximization with Cardinality Constraints , 2014, SODA.

[15]  Roy Schwartz,et al.  Comparing Apples and Oranges: Query Trade-off in Submodular Maximization , 2017, Math. Oper. Res..

[16]  Andreas Krause,et al.  Budgeted Nonparametric Learning from Data Streams , 2010, ICML.

[17]  Jeff A. Bilmes,et al.  Submodularity beyond submodular energies: Coupling edges in graph cuts , 2011, CVPR 2011.

[18]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[19]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.