Modeling of the variability of fatigue crack growth using cohesive zone elements

[1]  Gerhart I. Schuëller,et al.  Design of maintenance schedules for fatigue-prone metallic components using reliability-based optimization , 2010 .

[2]  Tirumalai S. Srivatsan,et al.  Predicting the influence of overload and loading mode on fatigue crack growth: A numerical approach using irreversible cohesive elements , 2009 .

[3]  J. M. Larsen,et al.  Towards a physics-based description of fatigue variability behavior in probabilistic life-prediction , 2009 .

[4]  Phadeon-Stelios Koutsourelakis,et al.  Effect of material uncertainties on fatigue life calculations of aircraft fuselages: A cohesive element model , 2006 .

[5]  Zdeněk Kala,et al.  Sensitivity Analysis of Fatigue Behaviour of Steel Structure under In-Plane Bending , 2006 .

[6]  Jacob Fish,et al.  Fatigue life prediction using 2‐scale temporal asymptotic homogenization , 2004 .

[7]  T. Belytschko,et al.  A method for growing multiple cracks without remeshing and its application to fatigue crack growth , 2004 .

[8]  J. Newman,et al.  Influence of Crack-Tip Configurations on the Fracture Response of 0.04-Inch Thick 2024-T3 Aluminum Alloy Sheet , 2002 .

[9]  Michael Ortiz,et al.  A cohesive model of fatigue crack growth , 2001 .

[10]  Hocine Kebir,et al.  Monte-Carlo simulations of life expectancy using the dual boundary element method , 2001 .

[11]  T. Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[12]  S. Atluri,et al.  Recent advances in the alternating method for elastic and inelastic fracture analyses , 1996 .

[13]  de R René Borst,et al.  On the numerical integration of interface elements , 1993 .

[14]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[15]  P. Goel,et al.  The Statistical Nature of Fatigue Crack Propagation , 1979 .

[16]  O. E. Wheeler Spectrum Loading and Crack Growth , 1972 .

[17]  R. Forman,et al.  Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures , 1967 .

[18]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[19]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[20]  Arthur J. McEvily,et al.  The rate of fatigue-crack propagation in two aluminum alloys , 1958 .

[21]  W. Illg Fatigue tests on notched and unnotched sheet specimens of 2024-T3 and 7075-T6 aluminum alloys and of SAE 4130 steel with special consideration of the life range from 2 to 10,000 cycles , 1956 .

[22]  Robert L. Taylor,et al.  FEAP - - A Finite Element Analysis Program , 2011 .

[23]  René de Borst,et al.  Mesh-independent discrete numerical representations of cohesive-zone models , 2006 .

[24]  Peter J. Laz,et al.  A probabilistic total fatigue life model incorporating material inhomogeneities, stress level and fracture mechanics , 2001 .

[25]  Billie F. Spencer,et al.  Reliability solution for the stochastic fatigue crack growth problem , 1989 .

[26]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[27]  E. Voce,et al.  The relationship between stress and strain for homogeneous deformations , 1948 .

[28]  G. Schuëller,et al.  Chair of Engineering Mechanics Ifm-publication 2-314 Effects of Uncertainties on Lifetime Prediction of Aircraft Components , 2022 .