Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov.

An anaerobic, halorespiring bacterium (strain PCE-M2(T) = DSM 13726(T) = ATCC BAA-583(T)) able to reduce tetrachloroethene to cis-dichloroethene was isolated from an anaerobic soil polluted with chlorinated aliphatic compounds. The isolate is assigned to the genus Sulfurospirillum as a novel species, Sulfurospirillum halorespirans sp. nov. Furthermore, on the basis of all available data, a related organism, Dehalospirillum multivorans DSM 12446(T), is reclassified to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov.

[1]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[2]  J. Scholten,et al.  The effect of sulfate and nitrate on methane formation in a freshwater sediment , 1995, Antonie van Leeuwenhoek.

[3]  P. Kroneck,et al.  Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species , 1992, Archives of Microbiology.

[4]  A. Neumann,et al.  Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium , 2004, Archives of Microbiology.

[5]  T. Leisinger,et al.  Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene , 2004, Biodegradation.

[6]  T. Wood,et al.  Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1 , 2000, Nature Biotechnology.

[7]  O. Drzyzga,et al.  Influence of Different Electron Donors and Acceptors on Dehalorespiration of Tetrachloroethene byDesulfitobacterium frappieri TCE1 , 1999, Applied and Environmental Microbiology.

[8]  W. D. de Vos,et al.  Purification and Molecular Characterization ofortho-Chlorophenol Reductive Dehalogenase, a Key Enzyme of Halorespiration in Desulfitobacterium dehalogenans * , 1999, The Journal of Biological Chemistry.

[9]  D. Lovley,et al.  Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. , 1999, International journal of systematic bacteriology.

[10]  Servé W. M. Kengen,et al.  Anaerobic microbial reductive dehalogenation of chlorinated ethenes , 1999 .

[11]  S. Zinder,et al.  Reductive Dechlorination of Chlorinated Ethenes and 1,2-Dichloroethane by “Dehalococcoides ethenogenes” 195 , 1999, Applied and Environmental Microbiology.

[12]  H. Boschker,et al.  The contribution of macrophyte‐derived organic matter to microbial biomass in salt‐marsh sediments: Stable carbon isotope analysis of microbial biomarkers , 1999 .

[13]  Christof Holliger,et al.  Reductive dechlorination in the energy metabolism of anaerobic bacteria , 1998 .

[14]  H. Rijnaarts,et al.  Stimulation of reductive dechlorination for in situ bioremediation of a soil contaminated with chlorinated ethenes , 1998 .

[15]  H. Naveau,et al.  Anaerobic Dechlorinating Bacteria , 1998, Biotechnology progress.

[16]  G. Diekert,et al.  Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S , 1997, Archives of Microbiology.

[17]  W. Liesack,et al.  Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium. , 1997, International journal of systematic bacteriology.

[18]  J. Gossett,et al.  Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. , 1997, Science.

[19]  R. Amann,et al.  Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis , 1996, Journal of bacteriology.

[20]  P. Lawson,et al.  Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols , 1996, Archives of Microbiology.

[21]  D. Lovley,et al.  Growth of Strain SES-3 with Arsenate and Other Diverse Electron Acceptors , 1995, Applied and environmental microbiology.

[22]  Erko Stackebrandt,et al.  Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology , 1994 .

[23]  P. Visscher,et al.  Isolation, Growth, and Metabolism of an Obligately Anaerobic, Selenate-Respiring Bacterium, Strain SES-3 , 1994, Applied and environmental microbiology.

[24]  A. Stams,et al.  A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth , 1993, Applied and environmental microbiology.

[25]  A. Zehnder,et al.  Complete biological reductive transformation of tetrachloroethene to ethane , 1992, Applied and environmental microbiology.

[26]  K.-D. Jahnke,et al.  BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer , 1992 .

[27]  J. Gossett,et al.  Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis , 1991, Applied and environmental microbiology.

[28]  D. Lane 16S/23S rRNA sequencing , 1991 .

[29]  J. Gossett,et al.  Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions , 1989, Applied and environmental microbiology.

[30]  W. Whitman,et al.  Precise Measurement of the G+C Content of Deoxyribonucleic Acid by High-Performance Liquid Chromatography , 1989 .

[31]  B. Fathepure,et al.  Anaerobic bacteria that dechlorinate perchloroethene , 1987, Applied and Environmental Microbiology.

[32]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[33]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[34]  P L McCarty,et al.  Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions , 1983, Applied and environmental microbiology.

[35]  K. Schleifer,et al.  Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. , 1983, Systematic and applied microbiology.

[36]  J. Hutton,et al.  Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: Acceleration of the renaturation rate , 1980, Biopolymers.

[37]  P. Cashion,et al.  A rapid method for the base ratio determination of bacterial DNA. , 1977, Analytical biochemistry.

[38]  J. Ley,et al.  The quantitative measurement of DNA hybridization from renaturation rates. , 1970, European journal of biochemistry.