A new class of entropic information measures, formal group theory and information geometry
暂无分享,去创建一个
Piergiulio Tempesta | Miguel Á Rodríguez | Álvaro Romaniega | P. Tempesta | Miguel A. Rodríguez | 'Alvaro Romaniega
[1] Shun-ichi Amari,et al. Geometry of q-Exponential Family of Probability Distributions , 2011, Entropy.
[2] Leandro Pardo,et al. Asymptotic distribution of (h, φ)-entropies , 1993 .
[3] P. Tempesta. Formal groups and Z-entropies , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[4] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[5] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[6] A. Plastino,et al. Generalized thermostatistics based on the Sharma-Mittal entropy and escort mean values , 2002 .
[7] P. Tempesta. Beyond the Shannon-Khinchin Formulation: The Composability Axiom and the Universal Group Entropy , 2014, 1407.3807.
[8] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[9] Frank Nielsen,et al. A closed-form expression for the Sharma–Mittal entropy of exponential families , 2011, ArXiv.
[10] P. Jizba,et al. The world according to R enyi: thermodynamics of multifractal systems , 2002, cond-mat/0207707.
[11] L. Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .
[12] S. Zozor,et al. General entropy-like uncertainty relations in finite dimensions , 2013, 1311.5602.
[13] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[14] F. Opitz. Information geometry and its applications , 2012, 2012 9th European Radar Conference.
[15] Shun-ichi Amari,et al. Geometry of deformed exponential families: Invariant, dually-flat and conformal geometries , 2012 .
[16] Aleksandr Yakovlevich Khinchin,et al. Mathematical foundations of information theory , 1959 .
[17] M. Masi. A step beyond Tsallis and Rényi entropies , 2005, cond-mat/0505107.
[18] C. Tsallis. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .
[19] Piergiulio Tempesta,et al. Uniqueness and characterization theorems for generalized entropies , 2017, ArXiv.
[20] Piergiulio Tempesta,et al. Group entropies, correlation laws, and zeta functions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[21] J. Naudts. Estimators, escort probabilities, and phi-exponential families in statistical physics , 2004, math-ph/0402005.
[22] Andreas Daffertshofer,et al. Exact time-dependent solutions of the Renyi Fokker–Planck equation and the Fokker–Planck equations related to the entropies proposed by Sharma and Mittal , 2000 .
[23] G. Crooks. On Measures of Entropy and Information , 2015 .
[24] Ernesto P. Borges,et al. Fisher metric from relative entropy group , 2018, 1805.11157.