The binuclear CuA centre of cytochrome oxidase

[1]  M. Saraste,et al.  Cytochrome oxidase evolved by tinkering with denitrification enzymes , 1994, FEBS letters.

[2]  S. Vries,et al.  The CuAsite of the caa3-type oxidase of Bacillus subtilis is a mixed-valence binuclear copper centre. , 1994 .

[3]  B. Hill Modeling the sequence of electron transfer reactions in the single turnover of reduced, mammalian cytochrome c oxidase with oxygen. , 1994, The Journal of biological chemistry.

[4]  M. Saraste,et al.  Soluble CuA-binding domain from the Paracoccus cytochrome c oxidase. , 1993, The Journal of biological chemistry.

[5]  Hansen Ap,et al.  ENDOR and ESEEM studies of cytochrome c oxidase: evidence for exchangeable protons at the CuA site. , 1993 .

[6]  T. Haltia,et al.  Two cysteines, two histidines, and one methionine are ligands of a binuclear purple copper center. , 1993, The Journal of biological chemistry.

[7]  B. Malmström,et al.  The nature of the CuAcenter in cytochrome c oxidase , 1993 .

[8]  T. Soulimane,et al.  Stoichiometry and redox behaviour of metals in cytochrome-c oxidase. , 1993, European journal of biochemistry.

[9]  R. Gennis,et al.  Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochromeaa3 and cytochromebo , 1993, Journal of bioenergetics and biomembranes.

[10]  B. Hill The sequence of electron carriers in the reaction of cytochromec oxidase with oxygen , 1993, Journal of bioenergetics and biomembranes.

[11]  R. Farid,et al.  Electron transfer in proteins , 1993 .

[12]  P. Rich,et al.  Binuclear centre structure of terminal protonmotive oxidases , 1993, FEBS letters.

[13]  D. Kastrau,et al.  A comparative EPR investigation of the multicopper proteins nitrous-oxide reductase and cytochrome c oxidase. , 1992, European journal of biochemistry.

[14]  P. Lappalainen,et al.  Restoration of a lost metal‐binding site: construction of two different copper sites into a subunit of the E. coli cytochrome o quinol oxidase complex. , 1992, The EMBO journal.

[15]  G. Babcock,et al.  Oxygen activation and the conservation of energy in cell respiration , 1992, Nature.

[16]  S. Chan,et al.  The effects of p-hydroxymercuribenzoic acid modification and heat treatment on the CuA reduction potential of cytochrome c oxidase. , 1991, The Journal of biological chemistry.

[17]  D. Dooley,et al.  A model of the copper centres of nitrous oxide reductase (Pseudomonas stutzeri) , 1991, FEBS letters.

[18]  C. Chothia,et al.  The structural homology of amicyanin from Thiobacillus versutus to plant plastocyanins. , 1991, The Journal of biological chemistry.

[19]  T. Pascher,et al.  Cassette mutagenesis of Met121 in azurin from Pseudomonas aeruginosa. , 1991, Protein engineering.

[20]  M. Saraste,et al.  Structural features of cytochrome oxidase , 1990, Quarterly Reviews of Biophysics.

[21]  P. Kroneck,et al.  The nature of the cupric site in nitrous oxide reductase and of CuA in cytochrome c oxidase , 1989, FEBS letters.

[22]  P. Kroneck,et al.  Nitrous oxide reductase from Pseudomonas stutzeri. Redox properties and spectroscopic characterization of different forms of the multicopper enzyme. , 1989, European journal of biochemistry.

[23]  P. Kroneck,et al.  The cupric site in nitrous oxide reductase contains a mixed‐valence [Cu(II),Cu(I)] binuclear center: A multifrequency electron paramagnetic resonance investigation , 1988, FEBS letters.

[24]  S. Chan,et al.  On the nature of cysteine coordination to CuA in cytochrome c oxidase. , 1988, The Journal of biological chemistry.

[25]  A. Thomson,et al.  The optical properties of CuA in bovine cytochrome c oxidase determined by low-temperature magnetic-circular-dichroism spectroscopy. , 1983, The Biochemical journal.

[26]  J. S. Hyde,et al.  Hyperfine structure resolved by 2 to 4 GHz EPR of cytochrome c oxidase. , 1979, The Journal of biological chemistry.

[27]  E T Adman,et al.  Copper protein structures. , 1991, Advances in protein chemistry.