Quasi-Perfect Lee Codes of Radius 2 and Arbitrarily Large Dimension
暂无分享,去创建一个
[1] Tomás Vetrík,et al. Abelian Cayley Graphs of Given Degree and Diameter 2 and 3 , 2014, Graphs Comb..
[2] Rudolf Ahlswede,et al. On Perfect Codes and Related Concepts , 2001, Des. Codes Cryptogr..
[3] Simon Špacapan,et al. Nonexistence of face-to-face four-dimensional tilings in the Lee metric , 2007, Eur. J. Comb..
[4] Peter Horák,et al. A new approach towards the Golomb-Welch conjecture , 2014, Eur. J. Comb..
[5] Ramón Beivide,et al. Perfect Codes From Cayley Graphs Over Lipschitz Integers , 2009, IEEE Transactions on Information Theory.
[6] Karel A. Post. Nonexistence Theorems on Perfect Lee Codes over Large Alphabets , 1975, Inf. Control..
[7] Ioan Tabus,et al. Bounds on the size of Lee-codes , 2013, 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA).
[8] Peter Horák,et al. Diameter Perfect Lee Codes , 2012, IEEE Transactions on Information Theory.
[9] P. Horak. Tilings in Lee metric , 2009, Eur. J. Comb..
[10] Reginaldo Palazzo Júnior,et al. Quasi-Perfect Codes From Cayley Graphs Over Integer Rings , 2013, IEEE Transactions on Information Theory.
[11] S. Golomb,et al. Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .
[12] Giuliana P. Davidoff,et al. Elementary number theory, group theory, and Ramanujan graphs , 2003 .
[13] Ramón Beivide,et al. Perfect Codes for Metrics Induced by Circulant Graphs , 2007, IEEE Transactions on Information Theory.
[14] Stanislav Stankovic,et al. On the use of Lee-codes for constructing multiple-valued error-correcting decision diagrams , 2012, 2012 5th International Symposium on Communications, Control and Signal Processing.
[15] Tuvi Etzion,et al. Product Constructions for Perfect Lee Codes , 2011, IEEE Transactions on Information Theory.
[16] S. Nishimura,et al. A generalization of the Lee distance and error correcting codes , 2008, Discret. Appl. Math..
[17] Italo J. Dejter,et al. A generalization of Lee codes , 2014, Des. Codes Cryptogr..
[18] Klaus Huber. Codes over Gaussian integers , 1994, IEEE Trans. Inf. Theory.
[19] Eitan Yaakobi,et al. Coding for the Lee and Manhattan Metrics With Weighing Matrices , 2013, IEEE Transactions on Information Theory.
[20] Bella Bose,et al. Quasi-perfect Lee distance codes , 2003, IEEE Trans. Inf. Theory.
[21] R. Goodstein,et al. An introduction to the theory of numbers , 1961 .
[22] Jozef Sirán,et al. Cayley graphs of given degree and diameter for cyclic, Abelian, and metacyclic groups , 2012, Discret. Math..
[23] Anxiao Jiang,et al. Correcting Charge-Constrained Errors in the Rank-Modulation Scheme , 2010, IEEE Transactions on Information Theory.
[24] Sueli I. Rodrigues Costa,et al. Graphs, tessellations, and perfect codes on flat tori , 2004, IEEE Transactions on Information Theory.
[25] Paul H. Siegel,et al. Lee-metric BCH codes and their application to constrained and partial-response channels , 1994, IEEE Trans. Inf. Theory.
[26] Sylvain Gravier,et al. On the Non-existence of 3-Dimensional Tiling in the Lee Metric , 1998, Eur. J. Comb..
[27] P. Horak. On perfect Lee codes , 2009, Discret. Math..
[28] Timo Lepistö. A Modification of the Elias-Bound and Nontexistence Theorems for Perfect Codes in the Lee-Metric , 1981, Inf. Control..
[29] J. Sirán,et al. Moore Graphs and Beyond: A survey of the Degree/Diameter Problem , 2013 .
[30] Lorenzo Milazzo,et al. Enumerating and decoding perfect linear Lee codes , 2009, Des. Codes Cryptogr..
[31] Ramón Beivide,et al. Graph-based metrics over QAM constellations , 2008, 2008 IEEE International Symposium on Information Theory.
[32] Jaakko Astola. An Elias-type bound for Lee codes over large alphabets and its application to perfect codes , 1982, IEEE Trans. Inf. Theory.