Contact Representations of Graphs in 3D

We study contact representations of graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We show that for every 3-connected planar graph, there exists a simultaneous representation of the graph and its dual with 3D boxes. We give a linear-time algorithm for constructing such a representation. This result extends the existing primal-dual contact representations of planar graphs in 2D using circles and triangles. While contact graphs in 2D directly correspond to planar graphs, we next study representations of non-planar graphs in 3D. In particular we consider representations of optimal 1-planar graphs. A graph is 1-planar if there exists a drawing in the plane where each edge is crossed at most once, and an optimal n-vertex 1-planar graph has the maximum (4n - 8) number of edges. We describe a linear-time algorithm for representing optimal 1-planar graphs without separating 4-cycles with 3D boxes. However, not every optimal 1-planar graph admits a representation with boxes. Hence, we consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graph with L-shaped polyhedra.

[1]  Tomás Madaras,et al.  The structure of 1-planar graphs , 2007, Discret. Math..

[2]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[3]  Jeremy J. Michalek,et al.  Architectural layout design optimization , 2002 .

[4]  Stephen G. Kobourov,et al.  Combinatorial and Geometric Properties of Planar Laman Graphs , 2012, SODA.

[5]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[6]  Ulrik Brandes,et al.  More Canonical Ordering , 2011, J. Graph Algorithms Appl..

[7]  Stefan Felsner,et al.  Homothetic Triangle Contact Representations of Planar Graphs , 2007, CCCG.

[8]  András Bezdek,et al.  On the Number of Mutually Touching Cylinders , 2007 .

[9]  Petr Hlinený Classes and Recognition of Curve Contact Graphs, , 1998, J. Comb. Theory, Ser. B.

[10]  Ben Shneiderman,et al.  Tree visualization with tree-maps: 2-d space-filling approach , 1992, TOGS.

[11]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[12]  Patrice Ossona de Mendez,et al.  Representations by Contact and Intersection of Segments , 2006, Algorithmica.

[13]  Paul Wollan,et al.  Generation of simple quadrangulations of the sphere , 2005, Discret. Math..

[14]  J. Kratochvil,et al.  Intersection Graphs of Segments , 1994, J. Comb. Theory, Ser. B.

[15]  Benjamin Lévêque,et al.  Triangle Contact Representations and Duality , 2010, Graph Drawing.

[16]  Robert E. Tarjan,et al.  Rectilinear planar layouts and bipolar orientations of planar graphs , 1986, Discret. Comput. Geom..

[17]  Stefan Felsner,et al.  Contact representations of planar graphs with cubes , 2011, SoCG '11.

[18]  Waldo R. Tobler Thirty Five Years of Computer Cartograms , 2004 .

[19]  David Avis,et al.  Computational aspects of Helly's theorem and its relatives , 1995, Int. J. Comput. Geom. Appl..

[20]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Yifan Hu,et al.  Visualizing Graphs and Clusters as Maps , 2010, IEEE Computer Graphics and Applications.

[23]  J. Pach,et al.  Representation of planar graphs by segments , 1994 .

[24]  Patrice Ossona de Mendez,et al.  On Triangle Contact Graphs , 1994, Combinatorics, Probability and Computing.

[25]  Stefan Felsner,et al.  Convex Drawings of 3-Connected Plane Graphs , 2005, SODA '05.

[26]  Goos Kant,et al.  Drawing planar graphs using the canonical ordering , 1996, Algorithmica.

[27]  Éric Fusy,et al.  Schnyder Decompositions for Regular Plane Graphs and Application to Drawing , 2011, Algorithmica.

[28]  Suresh Venkatasubramanian,et al.  Rectangular layouts and contact graphs , 2006, TALG.

[29]  Carsten Thomassen,et al.  Interval representations of planar graphs , 1986, J. Comb. Theory, Ser. B.

[30]  Giuseppe Liotta,et al.  On Representing Graphs by Touching Cuboids , 2012, Graph Drawing.

[31]  Bojan Mohar,et al.  Circle Packings of Maps in Polynomial Time , 1997, Eur. J. Comb..

[32]  H. de Fraysseix,et al.  On topological aspects of orientations , 2001, Discret. Math..

[33]  David Eppstein,et al.  The Galois Complexity of Graph Drawing: Why Numerical Solutions Are Ubiquitous for Force-Directed, Spectral, and Circle Packing Drawings , 2014, Graph Drawing.

[34]  Jan Kratochvíl,et al.  Representing graphs by disks and balls (a survey of recognition-complexity results) , 2001, Discret. Math..

[35]  Yusuke Suzuki Re-embeddings of Maximum 1-Planar Graphs , 2010, SIAM J. Discret. Math..

[36]  Donald H. House,et al.  Continuous cartogram construction , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[37]  Jeffrey D Ullma Computational Aspects of VLSI , 1984 .

[38]  Stephen G. Kobourov,et al.  Equilateral L-Contact Graphs , 2013, WG.

[39]  Kenneth Stephenson,et al.  A circle packing algorithm , 2003, Comput. Geom..

[40]  David Eppstein,et al.  On the Density of Maximal 1-Planar Graphs , 2012, Graph Drawing.

[41]  Jorge Urrutia,et al.  A Simple Proof of the Representation of Bipartite Planar Graphs as the Contact Graphs of Orthogonal Straight Line Segments , 1998, Inf. Process. Lett..

[42]  Stefan Felsner,et al.  Schnyder Woods and Orthogonal Surfaces , 2008, Discret. Comput. Geom..

[43]  Von H. Schumacher Zur Struktur 1‐planarer Graphen , 1986 .

[44]  E. M. Andreev ON CONVEX POLYHEDRA OF FINITE VOLUME IN LOBAČEVSKIĬ SPACE , 1970 .

[45]  E. Raisz The Rectangular Statistical Cartogram , 1934 .

[46]  K. Wagner,et al.  Über 1-optimale Graphen , 1984 .

[47]  K. Bezdek,et al.  Contact graphs of unit sphere packings revisited , 2012, 1210.5756.