A Preconditioner for A Primal-Dual Newton Conjugate Gradient Method for Compressed Sensing Problems
暂无分享,去创建一个
[1] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[2] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[3] Laurent Condat,et al. A Generic Proximal Algorithm for Convex Optimization—Application to Total Variation Minimization , 2014, IEEE Signal Processing Letters.
[4] Yin Zhang,et al. An efficient augmented Lagrangian method with applications to total variation minimization , 2013, Computational Optimization and Applications.
[5] Timothy A. Davis,et al. Algorithm 837: AMD, an approximate minimum degree ordering algorithm , 2004, TOMS.
[6] Ting Sun,et al. Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..
[7] J. Gondzio,et al. A Second-Order Method for Strongly Convex L1-Regularization Problems , 2013 .
[8] Marc Teboulle,et al. Smoothing and First Order Methods: A Unified Framework , 2012, SIAM J. Optim..
[9] José M. Bioucas-Dias,et al. An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.
[10] Damien Serant. Advanced Signal Processing Algorithms for GNSS/OFDM Receiver , 2012 .
[11] E. Candès. The restricted isometry property and its implications for compressed sensing , 2008 .
[12] Gene H. Golub,et al. A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..
[13] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[14] José M. Bioucas-Dias,et al. A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.
[15] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[16] Emmanuel J. Candès,et al. NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..
[17] Yin Zhang,et al. Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..
[18] Jacek Gondzio,et al. Matrix-free interior point method for compressed sensing problems , 2012, Mathematical Programming Computation.
[19] I. Loris,et al. On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty , 2011, 1104.1087.
[20] T. Chan,et al. Primal dual algorithms for convex models and applications to image restoration, registration and nonlocal inpainting , 2010 .
[21] Bernhard P. Wrobel,et al. Multiple View Geometry in Computer Vision , 2001 .
[23] Emmanuel J. Candès,et al. Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..
[24] Marc Teboulle,et al. Interior Gradient and Proximal Methods for Convex and Conic Optimization , 2006, SIAM J. Optim..
[25] Mohamed-Jalal Fadili,et al. Robust Sparse Analysis Regularization , 2011, IEEE Transactions on Information Theory.
[26] Deanna Needell,et al. Stable Image Reconstruction Using Total Variation Minimization , 2012, SIAM J. Imaging Sci..
[27] S. Mallat. A wavelet tour of signal processing , 1998 .
[28] Yonina C. Eldar,et al. Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.
[29] Curtis R. Vogel,et al. Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .