A Preconditioner for A Primal-Dual Newton Conjugate Gradient Method for Compressed Sensing Problems

In this paper we are concerned with the solution of compressed sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. We extend the primal-dual Newton Conjugate Gradient method (pdNCG) in [T. F. Chan, G. H. Golub, and P. Mulet, SIAM J. Sci. Comput., 20 (1999), pp. 1964--1977] to CS problems. We provide an inexpensive and provably effective preconditioning technique for linear systems using pdNCG. Numerical results are presented on CS problems which demonstrate the performance of pdNCG with the proposed preconditioner compared to state-of-the-art existing solvers.

[1]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[2]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[3]  Laurent Condat,et al.  A Generic Proximal Algorithm for Convex Optimization—Application to Total Variation Minimization , 2014, IEEE Signal Processing Letters.

[4]  Yin Zhang,et al.  An efficient augmented Lagrangian method with applications to total variation minimization , 2013, Computational Optimization and Applications.

[5]  Timothy A. Davis,et al.  Algorithm 837: AMD, an approximate minimum degree ordering algorithm , 2004, TOMS.

[6]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[7]  J. Gondzio,et al.  A Second-Order Method for Strongly Convex L1-Regularization Problems , 2013 .

[8]  Marc Teboulle,et al.  Smoothing and First Order Methods: A Unified Framework , 2012, SIAM J. Optim..

[9]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[10]  Damien Serant Advanced Signal Processing Algorithms for GNSS/OFDM Receiver , 2012 .

[11]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[12]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[13]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[14]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[15]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[16]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[17]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[18]  Jacek Gondzio,et al.  Matrix-free interior point method for compressed sensing problems , 2012, Mathematical Programming Computation.

[19]  I. Loris,et al.  On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty , 2011, 1104.1087.

[20]  T. Chan,et al.  Primal dual algorithms for convex models and applications to image restoration, registration and nonlocal inpainting , 2010 .

[21]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[22]  J. Mixter Fast , 2012 .

[23]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[24]  Marc Teboulle,et al.  Interior Gradient and Proximal Methods for Convex and Conic Optimization , 2006, SIAM J. Optim..

[25]  Mohamed-Jalal Fadili,et al.  Robust Sparse Analysis Regularization , 2011, IEEE Transactions on Information Theory.

[26]  Deanna Needell,et al.  Stable Image Reconstruction Using Total Variation Minimization , 2012, SIAM J. Imaging Sci..

[27]  S. Mallat A wavelet tour of signal processing , 1998 .

[28]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[29]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .