A universal hydrochloric acid-assistant powder-to-powder strategy for quick and mass preparation of lead-free perovskite microcrystals

[1]  Shao-An Yan,et al.  Nearly-Unity Quantum Yield and 12-Hour Afterglow from a Transparent Perovskite of Cs2NaScCl6:Tb. , 2022, Angewandte Chemie.

[2]  Libing Zhang,et al.  Slowing Down for Growth Mechanism and Speeding Up for Performance Optimization Based on Single Ligand Passivated CsPbBr3 Nanoplatelets , 2022, Advanced Optical Materials.

[3]  M. Yuan,et al.  Lanthanide doped lead-free double perovskites as the promising next generation ultra-broadband light sources , 2022, Light, science & applications.

[4]  Yuanhui Zheng,et al.  Compact ultrabroadband light-emitting diodes based on lanthanide-doped lead-free double perovskites , 2022, Light, science & applications.

[5]  Zhen Liu,et al.  Wide‐Bandgap Double Perovskites with Multiple Longitudinal‐Optical Phonon Scattering , 2022, Advanced Functional Materials.

[6]  Zhonghua Deng,et al.  Boosting the Self‐Trapped Exciton Emission in Alloyed Cs2(Ag/Na)InCl6 Double Perovskite via Cu+ Doping , 2022, Advanced science.

[7]  A. Rogach,et al.  Co-Doping of Cerium and Bismuth into Lead-Free Double Perovskite Cs2AgInCl6 Nanocrystals Results in Improved Photoluminescence Efficiency , 2021, ACS nanoscience Au.

[8]  Z. Liu,et al.  Multiexcitonic Emission in Zero-Dimensional Cs2ZrCl6:Sb3+ Perovskite Crystals. , 2021, Journal of the American Chemical Society.

[9]  Feng Gao,et al.  Lead‐Free Double Perovskite Cs2AgBiBr6: Fundamentals, Applications, and Perspectives , 2021, Advanced Functional Materials.

[10]  Bingbing Tian,et al.  Efficient White Photoluminescence from Self-Trapped Excitons in Sb3+/Bi3+-Codoped Cs2NaInCl6 Double Perovskites with Tunable Dual-Emission , 2021, ACS Energy Letters.

[11]  Yanjie Liang,et al.  Solution-Grown Chloride Perovskite Crystal of Red Afterglow. , 2021, Angewandte Chemie.

[12]  R. Xie,et al.  X-ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage , 2021, Light: Science & Applications.

[13]  R. Xie,et al.  X-ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage , 2021, Light, science & applications.

[14]  Jacek K. Stolarczyk,et al.  State of the Art and Prospects for Halide Perovskite Nanocrystals , 2021, ACS nano.

[15]  D. Zhao,et al.  X-ray-activated persistent luminescence nanomaterials for NIR-II imaging , 2021, Nature Nanotechnology.

[16]  G. Guo,et al.  Double Free: A Promising Route toward Moisture-Stable Hypotoxic Hybrid Perovskites , 2021 .

[17]  Lianjun Wang,et al.  Lead‐Free Halide Double Perovskite Nanocrystals for Light‐Emitting Applications: Strategies for Boosting Efficiency and Stability , 2021, Advanced science.

[18]  Qiushui Chen,et al.  High-resolution X-ray luminescence extension imaging , 2021, Nature.

[19]  William W. Yu,et al.  Lead‐Free Halide Perovskites for Light Emission: Recent Advances and Perspectives , 2021, Advanced science.

[20]  Xun Hu,et al.  Design, Synthesis, and Photocatalytic Application of Moisture-Stable Hybrid Lead-Free Perovskite. , 2020, ACS applied materials & interfaces.

[21]  Wentao Liang,et al.  Anomalous Octahedron Distortion of Bi-Alloyed Cs2AgInCl6 Crystal via XRD, Raman, Huang-Rhys Factor, and Photoluminescence. , 2020, The journal of physical chemistry letters.

[22]  L. Manna,et al.  Lead-Free Double Perovskite Cs2AgInCl6. , 2020, Angewandte Chemie.

[23]  Jun Lin,et al.  Facile solution synthesis of Bi3+/Yb3+ ions co-doped Cs2Na0.6Ag0.4InCl6 double perovskites with near-infrared emission. , 2020, Dalton transactions.

[24]  Qingkun Kong,et al.  Efficient Thermally Activated Delayed Fluorescence from All‐Inorganic Cesium Zirconium Halide Perovskite Nanocrystals , 2020, Angewandte Chemie.

[25]  Chun-Hua Yan,et al.  Multimodal Luminescent Yb3+/Er3+/Bi3+‐Doped Perovskite Single Crystals for X‐ray Detection and Anti‐Counterfeiting , 2020, Advanced materials.

[26]  Bin Yang,et al.  Efficient Thermally Activated Delayed Fluorescence from All-Inorganic Cesium Zirconium Halide Perovskite Nanocrystals. , 2020, Angewandte Chemie.

[27]  F. Kang,et al.  Highly Efficient Lead-Free (Bi,Ce)-Codoped Cs2Ag0.4Na0.6InCl6 Double Perovskites for White Light-Emitting Diodes , 2020 .

[28]  Yihua Hu,et al.  Aliovalent Doping and Surface Grafting Enable Efficient and Stable Lead‐Free Blue‐Emitting Perovskite Derivative , 2020, Advanced Optical Materials.

[29]  Huafeng Liu,et al.  Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators , 2020, Light, science & applications.

[30]  Z. Xia,et al.  Incorporating Rare‐Earth Terbium(III) Ions into Cs 2 AgInCl 6 :Bi Nanocrystals toward Tunable Photoluminescence , 2020 .

[31]  M. Kanatzidis,et al.  Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection , 2020, Nature Communications.

[32]  Z. Xia,et al.  Incorporating Rare-earth Tb3+ into Cs2AgInCl6:Bi Nanocrystals toward Tunable Photoluminescence. , 2020, Angewandte Chemie.

[33]  S. Chakraborty,et al.  Bi 3+ ‐Er 3+ and Bi 3+ ‐Yb 3+ Codoped Cs 2 AgInCl 6 Double Perovskite Near‐Infrared Emitters , 2020 .

[34]  S. Chakraborty,et al.  Bi3+-Ln3+ (Ln = Er and Yb) codoped Cs2AgInCl6 Double Perovskite Near Infrared Emitter. , 2020, Angewandte Chemie.

[35]  Z. Song,et al.  Double perovskite Cs2AgInCl6:Cr3+: broadband and near-infrared luminescent materials , 2019, Inorganic Chemistry Frontiers.

[36]  Bin Yang,et al.  Lead-Free Na-In Double Perovskite Nanocrystals Through Doping Ag+ for Bright Yellow Emission. , 2019, Angewandte Chemie.

[37]  T. K. Das,et al.  Tunable and Stable White Light Emission in Bi3+-Alloyed Cs2AgInCl6 Double Perovskite Nanocrystals , 2019 .

[38]  Guangda Niu,et al.  Tunable Color Temperatures and Efficient White Emission from Cs2 Ag1- x Nax In1- y Biy Cl6 Double Perovskite Nanocrystals. , 2019, Small.

[39]  S. Jadkar,et al.  Cs2TlBiI6: a new lead-free halide double perovskite with direct band gap , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  Y. Liu,et al.  Design Optimization of Lead-Free Perovskite Cs2AgInCl6:Bi Nanocrystals with 11.4% Photoluminescence Quantum Yield , 2019, Chemistry of Materials.

[41]  Xiuwen Zhang,et al.  Manipulation of Bi3+/In3+ Transmutation and Mn2+‐Doping Effect on the Structure and Optical Properties of Double Perovskite Cs2NaBi1‐xInxCl6 , 2019, Advanced Optical Materials.

[42]  P. Woodward,et al.  Cs2NaBiCl6:Mn2+—A New Orange-Red Halide Double Perovskite Phosphor , 2019, Chemistry of Materials.

[43]  K. Poeppelmeier,et al.  Li substituent tuning of LED phosphors with enhanced efficiency, tunable photoluminescence, and improved thermal stability , 2019, Science Advances.

[44]  Bin Yang,et al.  Lead-Free Direct Band Gap Double-Perovskite Nanocrystals with Bright Dual-Color Emission. , 2018, Journal of the American Chemical Society.

[45]  C. Moriyoshi,et al.  X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions , 2018, Light, science & applications.

[46]  Guangda Niu,et al.  Efficient and stable emission of warm-white light from lead-free halide double perovskites , 2018, Nature.

[47]  H. Zeng,et al.  In Situ Passivation of PbBr64– Octahedra toward Blue Luminescent CsPbBr3 Nanoplatelets with Near 100% Absolute Quantum Yield , 2018, ACS Energy Letters.

[48]  F. Giustino,et al.  Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap. , 2016, The journal of physical chemistry letters.

[49]  M. Carrière,et al.  Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. , 2016, Chemical reviews.

[50]  Ru‐Shi Liu,et al.  Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes , 2014, Nature Communications.

[51]  E. Hoke,et al.  Self-assembly of broadband white-light emitters. , 2014, Journal of the American Chemical Society.

[52]  K. Bennell,et al.  Recent advances and perspectives , 2012 .

[53]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .