The Perceptual Organization of Texture Flow: A Contextual Inference Approach

Locally parallel dense patterns-sometimes called texture flows-define a perceptually coherent structure of particular significance to perceptual organization. We argue that with applications ranging from image segmentation and edge classification to shading analysis and shape interpretation, texture flows deserve attention equal to edge segment grouping and curve completion. This paper develops the notion of texture flow from a geometrical point of view to argue that local measurements of such structures must incorporate two curvatures. We show how basic theoretical considerations lead to a unique model for the local behavior of the flow and to a notion of texture flow "good continuation." This, in turn, translates to a specification of consistency constraints between nearby flow measurements which we use for the computation of globally (piecewise) coherent structure through the contextual framework of relaxation labeling. We demonstrate the results on synthetic and natural images.

[1]  Steven W. Zucker,et al.  How Folds Cut a Scene , 2001, IWVF.

[2]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[3]  J. Kittler,et al.  RELAXATION LABELING ALGORITHMS - A REVIEW , 1985 .

[4]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[5]  Steven W. Zucker,et al.  Logical/Linear Operators for Image Curves , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Refractor Vision , 2000, The Lancet.

[7]  S. Zucker Computational and Psychophysical Experiments in Grouping: Early Orientation Selection , 1983 .

[8]  H. Nothdurft Sensitivity for structure gradient in texture discrimination tasks , 1985, Vision Research.

[9]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1997, Neural Computation.

[10]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[11]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[12]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[14]  A. Ravishankar Rao,et al.  Computing oriented texture fields , 1991, CVGIP Graph. Model. Image Process..

[15]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  Jan J. Koenderink,et al.  Local structure of movement parallax of the plane , 1976 .

[17]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Pietro Perona Orientation diffusions , 1998, IEEE Trans. Image Process..

[19]  L. Glass Moiré Effect from Random Dots , 1969, Nature.

[20]  Robert Osserman,et al.  Lectures on Minimal Surfaces. , 1991 .

[21]  Ron Kimmel,et al.  Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..

[22]  Kemt A. Stevens The Line of Curvature Constraint and the Interpretation of 3-D Shape From Parallel Surface Contours , 1983, IJCAI.

[23]  Steven W. Zucker,et al.  Computing with Self-Excitatory Cliques: A Model and an Application to Hyperacuity-Scale Computation in Visual Cortex , 1999, Neural Computation.

[24]  T. S. Lee,et al.  A Bayesian framework for understanding texture segmentation in the primary visual cortex , 1995, Vision Research.

[25]  A. Witkin,et al.  On the Role of Structure in Vision , 1983 .

[26]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[27]  A. Pressley Elementary Differential Geometry , 2000 .

[28]  Guillermo Sapiro,et al.  Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case , 2000, International Journal of Computer Vision.

[29]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[30]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[31]  S. Axler,et al.  Harmonic Function Theory , 1992 .

[32]  Steven W. Zucker,et al.  Shadows and shading flow fields , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  W. C. Graustein Harmonic minimal surfaces , 1940 .

[34]  Benjamin B. Kimia,et al.  Euler Spiral for Shape Completion , 2003, International Journal of Computer Vision.

[35]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[36]  Ramesh C. Jain,et al.  Computerized Flow Field Analysis: Oriented Texture Fields , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Thomas S. Huang,et al.  Image processing , 1971 .

[38]  K. A. Stevens,et al.  Computation of locally parallel structure , 1978, Biological Cybernetics.

[39]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[40]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[41]  M. Morgan,et al.  The orientational resolution of human texture perception , 1997, Vision Research.

[42]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Steven W. Zucker,et al.  A Gradient Projection Algorithm for Relaxation Methods , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Joost van de Weijer,et al.  Improved curvature and anisotropy estimation for curved line bundles , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[45]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[46]  D. Regan,et al.  Two-dimensional Aspect Ratio Discrimination for Shape Defined by Orientation Texture , 1996, Vision Research.

[47]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[48]  J T Todd,et al.  Visual perception of smoothly curved surfaces from double-projected contour patterns. , 1990, Journal of experimental psychology. Human perception and performance.

[49]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[51]  P. Cavanagh,et al.  Texture Laciness: The Texture Equivalent of Transparency? , 1996, Perception.

[52]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[53]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[54]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[55]  Josef Kittler,et al.  Relaxation labelling algorithms - a review , 1986, Image Vis. Comput..

[56]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[57]  J. Bergen,et al.  Texture segregation and orientation gradient , 1991, Vision Research.

[58]  B. O'neill Elementary Differential Geometry , 1966 .

[59]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[60]  Steven W. Zucker,et al.  Radial Projection: An Efficient Update Rule for Relaxation Labeling , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  G. M.,et al.  Lectures on the Differential Geometry of Curves and Surfaces , 1912, Nature.

[62]  H. C. Nothdurft,et al.  Texture segmentation and pop-out from orientation contrast , 1991, Vision Research.

[63]  Alfred M. Bruckstein,et al.  Diffusions and Confusions in Signal and Image Processing , 2001, Journal of Mathematical Imaging and Vision.