Bicriteria Network Design Problems

We study several bicriteria network design problems phrased as follows: given an undirected graph and two minimization objectives with a budget specified on one objective, find a subgraph satisfying certain connectivity requirements that minimizes the second objective subject to the budget on the first. First, we develop a formalism for bicriteria problems and their approximations. Secondly, we use a simple parametric search technique to provide bicriteria approximation algorithms for problems with two similar criteria, where both criteria are the same measure (such as the diameter or the total cost of a tree) but differ only in the cost function under which the measure is computed. Thirdly, we present an (O(log n), O(log n))-approximation algorithm for finding a diameter-constrained minimum cost spanning tree of an undirected graph on n nodes. Finally, for the class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. These pseudopolynomial-time algorithms can be converted to fully polynomialtime approximation schemes using a scaling technique.

[1]  Ramaswamy Chandrasekaran,et al.  Minimal ratio spanning trees , 1977, Networks.

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[4]  P. Camerini,et al.  The Bounded Path Tree Problem , 1982 .

[5]  K. Bharath-Kumar,et al.  Routing to Multiple Destinations in Computer Networks , 1983, IEEE Trans. Commun..

[6]  Larry D. Wittie,et al.  Multicast Communication on Network Computers , 1985, IEEE Software.

[7]  Eugene L. Lawler,et al.  Linear-Time Computation of Optimal Subgraphs of Decomposable Graphs , 1987, J. Algorithms.

[8]  Arthur Warburton,et al.  Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems , 1987, Oper. Res..

[9]  Hans L. Bodlaender,et al.  Dynamic Programming on Graphs with Bounded Treewidth , 1988, ICALP.

[10]  Shmuel Tomi Klein,et al.  Construction of optimal graphs for bit-vector compression , 1989, SIGIR '90.

[11]  Paul D. Seymour,et al.  Graph minors. IV. Tree-width and well-quasi-ordering , 1990, J. Comb. Theory, Ser. B.

[12]  Baruch Awerbuch,et al.  Cost-sensitive analysis of communication protocols , 1990, PODC '90.

[13]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[14]  C. Edward Chow,et al.  On multicast path finding algorithms , 1991, IEEE INFCOM '91. The conference on Computer Communications. Tenth Annual Joint Comference of the IEEE Computer and Communications Societies Proceedings.

[15]  R. Ravi,et al.  When trees collide: an approximation algorithm for the generalized Steiner problem on networks , 1991, STOC '91.

[16]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[17]  George C. Polyzos,et al.  Multicasting for multimedia applications , 1992, [Proceedings] IEEE INFOCOM '92: The Conference on Computer Communications.

[18]  Guy Kortsarz,et al.  Approximation Algorithms for Minimum Time Broadcast , 1992, ISTCS.

[19]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[20]  Refael Hassin,et al.  Approximation Schemes for the Restricted Shortest Path Problem , 1992, Math. Oper. Res..

[21]  George C. Polyzos,et al.  Multicast routing for multimedia communication , 1993, TNET.

[22]  R. Ravi,et al.  Many birds with one stone: multi-objective approximation algorithms , 1993, STOC '93.

[23]  Carsten Lund,et al.  Efficient probabilistically checkable proofs and applications to approximations , 1993, STOC.

[24]  Cynthia A. Phillips,et al.  The network inhibition problem , 1993, STOC.

[25]  Bruno Courcelle,et al.  An algebraic theory of graph reduction , 1993, JACM.

[26]  Samir Khuller,et al.  Balancing Minimum Spanning and Shortest Path Trees , 1993, SODA.

[27]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1993, STOC.

[28]  Qing K. Zhu,et al.  AN ITERATIVE APPROACH FOR DELAY-BOUNDED MINIMUM STEINER TREE CONSTRUCTION , 1994 .

[29]  R. Ravi,et al.  Spanning trees short or small , 1994, SODA '94.

[30]  R. Ravi,et al.  Rapid rumor ramification: approximating the minimum broadcast time , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[31]  Pierluigi Crescenzi,et al.  A compendium of NP optimization problems , 1994, WWW Spring 1994.

[32]  R. Ravi,et al.  When Trees Collide: An Approximation Algorithm for the Generalized Steiner Problem on Networks , 1995, SIAM J. Comput..

[33]  Joseph L. Ganley,et al.  The Multi-Weighted Spanning Tree Problem , 1995 .

[34]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[35]  D. Peleg,et al.  Approximating shallow-light trees , 1997, SODA '97.

[36]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[37]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[38]  Madhu Sudan,et al.  Improved Low-Degree Testing and its Applications , 1997, STOC '97.