Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life lithium-ion batteries

[1]  Md. Ariful Hoque,et al.  Multigrain Platinum Nanowires Consisting of Oriented Nanoparticles Anchored on Sulfur‐Doped Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst , 2015, Advanced materials.

[2]  Zhongwei Chen,et al.  Subeutectic growth of single-crystal silicon nanowires grown on and wrapped with graphene nanosheets: high-performance anode material for lithium-ion battery. , 2014, ACS applied materials & interfaces.

[3]  Jaephil Cho,et al.  Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. , 2014, ACS nano.

[4]  Ja-Yeon Choi,et al.  Oxygen Reduction on Graphene−Carbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur , 2014 .

[5]  Michael J Sailor,et al.  Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes , 2014, Nature Communications.

[6]  Md. Ariful Hoque,et al.  Development and Simulation of Sulfur‐doped Graphene Supported Platinum with Exemplary Stability and Activity Towards Oxygen Reduction , 2014 .

[7]  Shahram Arbab,et al.  Indicators for evaluation of progress in thermal stabilization reactions of polyacrylonitrile fibers , 2014 .

[8]  Christian Martin Driving change in the battery industry. , 2014, Nature nanotechnology.

[9]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[10]  Xingcheng Xiao,et al.  Engineered Si electrode nanoarchitecture: a scalable postfabrication treatment for the production of next-generation Li-ion batteries. , 2014, Nano letters.

[11]  Wenquan Lu,et al.  Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review , 2014 .

[12]  Guihua Yu,et al.  Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. , 2013, Nano letters.

[13]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[14]  D. Stalke,et al.  Reaction of N-heterocyclic silylenes with thioketone: formation of silicon-sulfur three (Si-C-S)- and five (Si-C-C-C-S)-membered ring systems. , 2013, Chemistry.

[15]  Zhongfang Chen,et al.  XH/π (X = C, Si) Interactions in Graphene and Silicene: Weak in Strength, Strong in Tuning Band Structures. , 2013, The journal of physical chemistry letters.

[16]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[17]  K. Müllen,et al.  Efficient Synthesis of Heteroatom (N or S)‐Doped Graphene Based on Ultrathin Graphene Oxide‐Porous Silica Sheets for Oxygen Reduction Reactions , 2012 .

[18]  Assessment of the PW86+PBE+XDM density functional on van der Waals complexes at non-equilibrium geometries. , 2012, The Journal of chemical physics.

[19]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[20]  T. Maiyalagan,et al.  Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications , 2012 .

[21]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[22]  Z. Yao,et al.  Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. , 2012, ACS nano.

[23]  M. Antonietti,et al.  A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres , 2012 .

[24]  R. Whitby,et al.  High temperature oxidative resistance of polyacrylonitrile-methylmethacrylate copolymer powder converting to a carbonized monolith , 2012 .

[25]  Y. Cuia,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[26]  Arne Thomas,et al.  Microporous sulfur-doped carbon from thienyl-based polymer network precursors. , 2011, Chemical communications.

[27]  S. Woo,et al.  Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions , 2011 .

[28]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[29]  G. Simon,et al.  Improving Anodes for Lithium Ion Batteries , 2011 .

[30]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[31]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[32]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[33]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[34]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[35]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[36]  M. Armand,et al.  Building better batteries , 2008, Nature.

[37]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[38]  Chengguo Wang,et al.  High‐temperature DSC study of polyacrylonitrile precursors during their conversion to carbon fibers , 2007 .

[39]  E. Wang,et al.  Thickness dependence of the surface plasmon dispersion in ultrathin aluminum films on silicon , 2006 .

[40]  M. Biesinger,et al.  New interpretations of XPS spectra of nickel metal and oxides , 2006 .

[41]  L. Jie,et al.  Comparative study on preparing carbon fibers based on PAN precursors with different comonomers , 2006 .

[42]  Adsorption and thermal decomposition of H2S on Si(100) , 2002 .

[43]  F. Yubero,et al.  Determination of surface nanostructure from analysis of electron plasmon losses in XPS , 2002 .

[44]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[45]  R. Hamers,et al.  Sulfur Atoms as Tethers for Selective Attachment of Aromatic Molecules to Silicon(001) Surfaces , 2001 .

[46]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[47]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[48]  P. Avouris,et al.  The effect of structural distortions on the electronic structure of carbon nanotubes , 1998, cond-mat/9808269.

[49]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[50]  E. Baerends,et al.  Precise density-functional method for periodic structures. , 1991, Physical review. B, Condensed matter.

[51]  Evert Jan Baerends,et al.  Quadratic integration over the three-dimensional Brillouin zone , 1991 .

[52]  M. Fukuhara,et al.  XPS studies on the chemical structure of the stabilized polyacrylonitrile fiber in the carbon fiber production process , 1986 .

[53]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[54]  W. Morgan,et al.  Binding energy shifts in the x-ray photoelectron spectra of a series of related Group IVa compounds , 1973 .

[55]  A. Haas The Chemistry of Silicon-Sulfur Compounds , 1965 .