Electrode Side Reactions, Capacity Loss and Mechanical Degradation in Lithium-Ion Batteries

[1]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[2]  M. Verbrugge,et al.  Modeling diffusion-induced stress in nanowire electrode structures , 2010 .

[3]  Martin Winter,et al.  Tin and tin-based intermetallics as new anode materials for lithium-ion cells , 2001 .

[4]  D. J. Coyle,et al.  The Impact of Varying the Concentration of Vinylene Carbonate Electrolyte Additive in Wound Li-Ion Cells , 2011 .

[5]  R. Yazami,et al.  Mechanism of self-discharge in graphite–lithium anode , 2002 .

[6]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[7]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[8]  A. Gennaro,et al.  Homogeneous Electron Transfer Catalysis of the Electrochemical Reduction of Carbon Dioxide. Do Aromatic Anion Radicals React in an Outer-Sphere Manner? , 1996 .

[9]  Yang-Tse Cheng,et al.  Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes , 2011 .

[10]  Doron Aurbach,et al.  Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, Raman spectroscopy and SEM , 2005 .

[11]  Jian Zhang,et al.  Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries , 2008 .

[12]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[13]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[14]  Vincent S. Battaglia,et al.  The Limited Effect of VC in Graphite/NMC Cells , 2015 .

[15]  P. Regtien,et al.  Modeling Battery Behavior for Accurate State-of-Charge Indication , 2006 .

[16]  Daniel P. Abraham,et al.  Real-Time Stress Measurements in Lithium-ion Battery Negative-electrodes , 2012 .

[17]  M. Armand,et al.  Building better batteries , 2008, Nature.

[18]  Mark W. Verbrugge,et al.  Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation , 2009 .

[19]  R. Spotnitz Simulation of capacity fade in lithium-ion batteries , 2003 .

[20]  Yang-Tse Cheng,et al.  Effects of Concentration-Dependent Elastic Modulus on Diffusion-Induced Stresses for Battery Applications , 2010 .

[21]  Matthieu Dubarry,et al.  Identify capacity fading mechanism in a commercial LiFePO4 cell , 2009 .

[22]  Mark W. Verbrugge,et al.  Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics , 2012 .

[23]  John B. Kerr,et al.  The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge , 2003 .

[24]  M. Verbrugge,et al.  Aging Mechanisms of LiFePO4 Batteries Deduced by Electrochemical and Structural Analyses , 2010 .

[25]  Yong Yang,et al.  A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells , 2008 .

[26]  M. Safari,et al.  Aging of a Commercial Graphite/LiFePO4 Cell , 2011 .