Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET

We present in vivo single-cell FRET measurements in the Escherichia coli chemotaxis system that reveal pervasive signaling variability, both across cells in isogenic populations and within individual cells over time. We quantify cell-to-cell variability of adaptation, ligand response, as well as steady-state output level, and analyze the role of network design in shaping this diversity from gene expression noise. In the absence of changes in gene expression, we find that single cells demonstrate strong temporal fluctuations. We provide evidence that such signaling noise can arise from at least two sources: (i) stochastic activities of adaptation enzymes, and (ii) receptor-kinase dynamics in the absence of adaptation. We demonstrate that under certain conditions, (ii) can generate giant fluctuations that drive signaling activity of the entire cell into a stochastic two-state switching regime. Our findings underscore the importance of molecular noise, arising not only in gene expression but also in protein networks.

[1]  H. Berg,et al.  Effect of Chemoreceptor Modification on Assembly and Activity of the Receptor-Kinase Complex in Escherichia coli , 2004, Journal of bacteriology.

[2]  Robert G. Endres,et al.  Chemotactic Response and Adaptation Dynamics in Escherichia coli , 2010, PLoS Comput. Biol..

[3]  Thierry Emonet,et al.  Stochastic coordination of multiple actuators reduces latency and improves chemotactic response in bacteria , 2011, Proceedings of the National Academy of Sciences.

[4]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[5]  Ann M Stock,et al.  Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Thierry Emonet,et al.  Adaptation Dynamics in Densely Clustered Chemoreceptors , 2013, PLoS Comput. Biol..

[7]  J. S. Parkinson,et al.  Differential Activation of Escherichia coli Chemoreceptors by Blue-Light Stimuli , 2006, Journal of bacteriology.

[8]  Antonio Celani,et al.  The Role of Adaptation in Bacterial Speed Races , 2016, PLoS Comput. Biol..

[9]  Nikita Vladimirov,et al.  Role of Translational Coupling in Robustness of Bacterial Chemotaxis Pathway , 2009, PLoS biology.

[10]  K. Namba,et al.  Populational heterogeneity vs. temporal fluctuation in Escherichia coli flagellar motor switching. , 2013, Biophysical journal.

[11]  Yuhai Tu,et al.  How white noise generates power-law switching in bacterial flagellar motors. , 2005, Physical review letters.

[12]  D. Bray,et al.  A free-energy-based stochastic simulation of the Tar receptor complex. , 1999, Journal of molecular biology.

[13]  Thierry Emonet,et al.  Direct Correlation between Motile Behavior and Protein Abundance in Single Cells , 2016, bioRxiv.

[14]  Y. Tu Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation. , 2013, Annual review of biophysics.

[15]  S. V. Aksenov,et al.  A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. , 2003, Journal of molecular biology.

[16]  Ned S Wingreen,et al.  Dynamics of cooperativity in chemical sensing among cell-surface receptors. , 2011, Physical review letters.

[17]  K. Hughes,et al.  Coupling of Flagellar Gene Expression to Flagellar Assembly in Salmonella enterica Serovar Typhimurium andEscherichia coli , 2000, Microbiology and Molecular Biology Reviews.

[18]  J. Elf,et al.  Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. , 2004, Systems biology.

[19]  J. S. Parkinson,et al.  Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. , 2015, Trends in microbiology.

[20]  H. Berg,et al.  Migration of bacteria in semisolid agar. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Klemens Pichler,et al.  Monitoring bacterial chemotaxis by using bioluminescence resonance energy transfer: Absence of feedback from the flagellar motors , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Vinnicombe,et al.  Fundamental limits on the suppression of molecular fluctuations , 2010, Nature.

[23]  T. Shimizu,et al.  Salmonella chemoreceptors McpB and McpC mediate a repellent response to L‐cystine: a potential mechanism to avoid oxidative conditions , 2012, Molecular microbiology.

[24]  Yuhai Tu,et al.  Effects of adaptation in maintaining high sensitivity over a wide range of backgrounds for Escherichia coli chemotaxis. , 2007, Biophysical journal.

[25]  David H Burkhardt,et al.  Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources , 2014, Cell.

[26]  Nikita Vladimirov,et al.  Thermal Robustness of Signaling in Bacterial Chemotaxis , 2011, Cell.

[27]  Mingming Wu,et al.  Responses of Escherichia coli Bacteria to Two Opposing Chemoattractant Gradients Depend on the Chemoreceptor Ratio , 2010, Journal of bacteriology.

[28]  H. Berg,et al.  A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli , 2010, Molecular systems biology.

[29]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[30]  J. Adler,et al.  The Range of Attractant Concentrations for Bacterial Chemotaxis and the Threshold and Size of Response over This Range , 1973, The Journal of general physiology.

[31]  N. Wingreen,et al.  Mechanism of bidirectional thermotaxis in Escherichia coli , 2017, eLife.

[32]  Ido Golding,et al.  Chemotactic adaptation kinetics of individual Escherichia coli cells , 2012, Proceedings of the National Academy of Sciences.

[33]  Steven W. Zucker,et al.  Feedback between motion and sensation provides nonlinear boost in run-and-tumble navigation , 2017, PLoS Comput. Biol..

[34]  Ned S. Wingreen,et al.  Precise adaptation in bacterial chemotaxis through “assistance neighborhoods” , 2006, Proceedings of the National Academy of Sciences.

[35]  Victor Sourjik,et al.  In vivo measurement by FRET of pathway activity in bacterial chemotaxis. , 2007, Methods in enzymology.

[36]  Y. Tu,et al.  Effects of receptor interaction in bacterial chemotaxis. , 2004, Biophysical journal.

[37]  G. L. Hazelbauer,et al.  Cellular Stoichiometry of the Components of the Chemotaxis Signaling Complex , 2004, Journal of bacteriology.

[38]  J. S. Parkinson,et al.  Collaborative signaling by mixed chemoreceptor teams in Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Leibler,et al.  An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. , 2000, Science.

[40]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[41]  Nonlinearity, fluctuations, and response in sensory systems. , 2012, Physical review letters.

[42]  Dennis Bray,et al.  Binding and diffusion of CheR molecules within a cluster of membrane receptors. , 2002, Biophysical journal.

[43]  D. Bray,et al.  Receptor clustering as a cellular mechanism to control sensitivity , 1998, Nature.

[44]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[45]  A. Lupas,et al.  Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. , 1989, The Journal of biological chemistry.

[46]  S. Asakura,et al.  Two-state model for bacterial chemoreceptor proteins. The role of multiple methylation. , 1984, Journal of molecular biology.

[47]  D. Gillespie The mathematics of Brownian motion and Johnson noise , 1996 .

[48]  J. Stock,et al.  Multiple forms of the CheB methylesterase in bacterial chemosensing. , 1985, The Journal of biological chemistry.

[49]  H. Berg,et al.  Functional interactions between receptors in bacterial chemotaxis , 2004, Nature.

[50]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[51]  H. Berg,et al.  Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. S. Parkinson,et al.  A Trigger Residue for Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor , 2015, Journal of bacteriology.

[53]  S. Leibler,et al.  Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments , 2005, Science.

[54]  H. Salman,et al.  Precision and variability in bacterial temperature sensing. , 2015, Biophysical journal.

[55]  W. Catterall,et al.  Sodium channels in planar lipid bilayers. Channel gating kinetics of purified sodium channels modified by batrachotoxin , 1986, The Journal of general physiology.

[56]  H. Berg,et al.  Receptor sensitivity in bacterial chemotaxis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Robert G. Endres,et al.  Predicting Chemical Environments of Bacteria from Receptor Signaling , 2014, PLoS Comput. Biol..

[58]  D. Koshland,et al.  Non-genetic individuality: chance in the single cell , 1976, Nature.

[59]  V. Sourjik,et al.  Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway , 2009, Molecular systems biology.

[60]  Roman Stocker,et al.  Response rescaling in bacterial chemotaxis , 2011, Proceedings of the National Academy of Sciences.

[61]  R C Stewart,et al.  Activating and inhibitory mutations in the regulatory domain of CheB, the methylesterase in bacterial chemotaxis. , 1993, The Journal of biological chemistry.

[62]  D. Koshland,et al.  An amplified sensitivity arising from covalent modification in biological systems. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Dan V. Nicolau,et al.  Conformational Spread as a Mechanism for Cooperativity in the Bacterial Flagellar Switch , 2010, Science.

[64]  Ganesh S Anand,et al.  Kinetic basis for the stimulatory effect of phosphorylation on the methylesterase activity of CheB. , 2002, Biochemistry.

[65]  G. L. Hazelbauer,et al.  Core unit of chemotaxis signaling complexes , 2011, Proceedings of the National Academy of Sciences.

[66]  V. Sourjik,et al.  Relation between chemotaxis and consumption of amino acids in bacteria , 2015, Molecular microbiology.

[67]  Uri Alon,et al.  Robust amplification in adaptive signal transduction networks , 2001 .

[68]  M. Elowitz,et al.  Functional roles for noise in genetic circuits , 2010, Nature.

[69]  Ed Zintel,et al.  Resources , 1998, IT Prof..

[70]  J. Adler Chemotaxis in Bacteria , 1966, Science.

[71]  Albert Libchaber,et al.  A concentration-dependent switch in the bacterial response to temperature , 2007, Nature Cell Biology.

[72]  Ned S. Wingreen,et al.  Self-Organization of the Escherichia Coli Chemotaxis Network Imaged with Super-Resolution Light Microscopy , 2010 .

[73]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[74]  J. Vilar,et al.  From molecular noise to behavioural variability in a single bacterium , 2004, Nature.

[75]  Howard C. Berg,et al.  Signal processing times in bacterial chemotaxis , 1982, Nature.

[76]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[77]  M. Vergassola,et al.  Noninvasive inference of the molecular chemotactic response using bacterial trajectories , 2012, Proceedings of the National Academy of Sciences.

[78]  G. L. Hazelbauer,et al.  Chemoreceptors in signalling complexes: shifted conformation and asymmetric coupling , 2010, Molecular microbiology.

[79]  P. Cluzel,et al.  Interdependence of behavioural variability and response to small stimuli in bacteria , 2010, Nature.

[80]  D E Koshland,et al.  Intrinsic and extrinsic light responses of Salmonella typhimurium and Escherichia coli , 1975, Journal of Bacteriology.

[81]  H. Berg,et al.  Transient response to chemotactic stimuli in Escherichia coli. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[82]  A. Vaknin,et al.  Prolonged stimuli alter the bacterial chemosensory clusters , 2013, Molecular microbiology.

[83]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[84]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[85]  F. Dahlquist,et al.  Mutations that affect control of the methylesterase activity of CheB, a component of the chemotaxis adaptation system in Escherichia coli , 1990, Journal of bacteriology.

[86]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[87]  Filipe Tostevin,et al.  Signaling noise enhances chemotactic drift of E. coli. , 2012, Physical review letters.

[88]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , .

[89]  J. Timmer,et al.  Design principles of a bacterial signalling network , 2005, Nature.

[90]  P. Cluzel,et al.  Relationship between cellular response and behavioral variability in bacterial chemotaxis , 2007, Proceedings of the National Academy of Sciences.

[91]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[92]  H. Berg,et al.  Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[93]  D E Koshland,et al.  Kinetics of receptor modification. The multiply methylated aspartate receptors involved in bacterial chemotaxis. , 1986, The Journal of biological chemistry.

[94]  Monica L. Skoge,et al.  Chemosensing in Escherichia coli: two regimes of two-state receptors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[95]  D. Koshland,et al.  Electron acceptor taxis and blue light effect on bacterial chemotaxis , 1979, Journal of bacteriology.

[96]  Ellen S. Vitetta,et al.  An allosteric model for heterogeneous receptor complexes : Understanding bacterial chemotaxis responses to multiple stimuli , 2006 .

[97]  V. Sourjik,et al.  Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli , 2012, Proceedings of the National Academy of Sciences.

[98]  Yann S. Dufour,et al.  Molecular Systems Biology Peer Review Process File Non-genetic Diversity Modulates Population Performance Transaction Report , 2022 .

[99]  Nikita Vladimirov,et al.  Imprecision of Adaptation in Escherichia coli Chemotaxis , 2014, PloS one.

[100]  H. Berg,et al.  Temporal comparisons in bacterial chemotaxis. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Karen A. Fahrner,et al.  Control of direction of flagellar rotation in bacterial chemotaxis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[102]  M. D. Lazova,et al.  Dose-Response Analysis of Chemotactic Signaling Response in Salmonella typhimurium LT2 upon Exposure to Cysteine / Cystine Redox Pair , 2016, PloS one.

[103]  G. Wadhams,et al.  Making sense of it all: bacterial chemotaxis , 2004, Nature Reviews Molecular Cell Biology.

[104]  M. Simon,et al.  Flagellar rotation and the mechanism of bacterial motility , 1974, Nature.

[105]  Robert G. Endres,et al.  Noise characteristics of the Escherichia coli rotary motor , 2011, BMC Systems Biology.

[106]  Howard C. Berg,et al.  Adaptation at the output of the chemotaxis signalling pathway , 2012, Nature.

[107]  H. Berg,et al.  Ultrasensitivity of an adaptive bacterial motor. , 2013, Journal of molecular biology.

[108]  C. Rao,et al.  Control, exploitation and tolerance of intracellular noise , 2002, Nature.

[109]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[110]  T. Duke,et al.  Heightened sensitivity of a lattice of membrane receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[111]  H. Berg,et al.  Impulse responses in bacterial chemotaxis , 1982, Cell.

[112]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[113]  Ned S. Wingreen,et al.  Self-Organization of the Escherichia coli Chemotaxis Network Imaged with Super-Resolution Light Microscopy , 2009, PLoS biology.

[114]  A. Borczuk,et al.  Demethylation of bacterial chemoreceptors is inhibited by attractant stimuli in the complete absence of the regulatory domain of the demethylating enzyme. , 1986, Biochemical and biophysical research communications.

[115]  Ertugrul M. Ozbudak,et al.  Regulation of noise in the expression of a single gene , 2002, Nature Genetics.

[116]  Christopher A. Voigt,et al.  Automated design of synthetic ribosome binding sites to control protein expression , 2016 .

[117]  Glenn Vinnicombe,et al.  Constraints on Fluctuations in Sparsely Characterized Biological Systems. , 2016, Physical review letters.

[118]  Xiongwu Wu,et al.  Lateral density of receptor arrays in the membrane plane influences sensitivity of the E. coli chemotaxis response , 2011, The EMBO journal.

[119]  Yuhai Tu,et al.  Modeling the chemotactic response of Escherichia coli to time-varying stimuli , 2008, Proceedings of the National Academy of Sciences.

[120]  P. R. ten Wolde,et al.  Spatio-temporal correlations can drastically change the response of a MAPK pathway , 2009, Proceedings of the National Academy of Sciences.