Mean Location and Sample Mean Location on Manifolds

In a previous investigation we studied some asymptotic properties of the sample mean location on submanifolds of Euclidean space. The sample mean location generalizes least squares statistics to smooth compact submanifolds of Euclidean space. In this paper these properties are put into use. Tests for hypotheses about mean location are constructed and confidence regions for mean location are indicated. We study the asymptotic distribution of the test statistic. The problem of comparing mean locations for two samples is analyzed. Special attention is paid to observations on Stiefel manifolds including the orthogonal groupO(p) and spheresSk?1, and special orthogonal groupsSO(p). The results also are illustrated with our experience with simulations.

[1]  A. James Normal Multivariate Analysis and the Orthogonal Group , 1954 .

[2]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[3]  Michel Loève,et al.  Probability Theory I , 1977 .

[4]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[5]  René Thom,et al.  Sur le cut-locus d'une variété plongée , 1972 .

[6]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[7]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[8]  Chris Chatfield,et al.  Introduction to Statistical Time Series. , 1976 .

[9]  K. Mardia,et al.  Uniform distribution on a Stiefel manifold , 1977 .

[10]  K. Mardia,et al.  The von Mises–Fisher Matrix Distribution in Orientation Statistics , 1977 .

[11]  K. Mardia,et al.  Maximum Likelihood Estimators for the Matrix Von Mises-Fisher and Bingham Distributions , 1979 .

[12]  N. Fisher,et al.  Efficient Simulation of the von Mises Distribution , 1979 .

[13]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[14]  Samuel Karlin,et al.  Studies in econometrics, time series, and multivariate statistics , 1983 .

[15]  G. S. Watson Statistics on Spheres , 1983 .

[16]  G. S. Watson,et al.  LIMIT THEOREMS ON HIGH DIMENSIONAL SPHERES AND STIEFEL MANIFOLDS , 1983 .

[17]  M. J. Prentice Orientation Statistics Without Parametric Assumptions , 1986 .

[18]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[19]  Kanti V. Mardia,et al.  Directional data analysis:an overview * , 1988 .

[20]  M. E. Johnson,et al.  Multivariate Statistical Simulation , 1988 .

[21]  Peter E. Jupp,et al.  A Unified View of the Theory of Directional Statistics, 1975-1988 , 1989 .

[22]  Michael J. Prentice,et al.  Spherical Regression on Matched Pairs of Orientation Statistics , 1989 .

[23]  H. Hendriks SUR LE CUT-LOCUS D'UNE SOUS-VARIETE DE L'ESPACE EUCLIDIEN , 1990 .

[24]  Y. Chikuse The matrix angular central Gaussian distribution , 1990 .

[25]  H. Hendriks A Crame´r-Rao–type lower bound for estimators with values in a manifold , 1991 .

[26]  H.W.M. Hendriks Sur le cut-locus d'une sousvariété de l'espace euclidien. Négligeabilité , 1992 .

[27]  F. Ruymgaart,et al.  A Cramér-Rao type inequality for random variables in Euclidean manifolds , 1992 .

[28]  Zinoviy Landsman,et al.  Asymptotic behavior of sample mean location for manifolds , 1996 .

[29]  F. Ruymgaart,et al.  Asymptotic Behavior of Sample Mean Direction for Spheres , 1996 .

[30]  Asymptotic tests for mean location on manifolds , 1996 .