Multi-objective Evolutionary Algorithms for Resource Allocation Problems

The inadequacy of classical methods to handle resource allocation problems (RAPs) draw the attention of evolutionary algorithms (EAs) to these problems. The potentialities of EAs are exploited in the present work for handling two such RAPs of quite different natures, namely (1) university class timetabling problem and (2) land-use management problem. In many cases, these problems are over-simplified by ignoring many important aspects, such as different types of constraints and multiple objective functions. In the present work, two EA-based multi-objective optimizers are developed for handling these two problems by considering various aspects that are common to most of their variants. Finally, the similarities between the problems, and also between their solution techniques, are analyzed through the application of the developed optimizers on two real problems.

[1]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[2]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[3]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[4]  Mahdi Al-Kaisi,et al.  Impact of Tillage and Crop Rotation Systems on Soil Carbon Sequestration , 2008 .

[5]  Carlos M. Fonseca,et al.  Multi-objective evolutionary algorithm for land-use management problem , 2007 .

[6]  Carlos M. Fonseca,et al.  A Study of Examination Timetabling with Multiobjective Evolutionary Algorithms , 2001 .

[7]  L. D. Gaspero,et al.  LOCAL SEARCH TECHNIQUES FOR EDUCATIONAL TIMETABLING PROBLEMS , 2001 .

[8]  Gilbert Laporte,et al.  Recent Developments in Practical Examination Timetabling , 1995, PATAT.

[9]  H. Lund Adaptive Approaches Towards Better GA Performance in Dynamic Fitness Landscapes , 1994 .

[10]  Norman L. Lawrie An integer linear programming model of a school timetabling problem , 1969, Comput. J..

[11]  Scott M. Smith,et al.  Computer Intensive Methods for Testing Hypotheses: An Introduction , 1989 .

[12]  S. Kameshwaran Algorithms For Piecewise Linear Knapsack Problems With Applications In Electronic Commerce , 2004 .

[13]  Tim Fischer,et al.  Automated Solution of a Highly Constrained School Timetabling Problem - Preliminary Results , 2001, EvoWorkshops.

[14]  Hana Rudová,et al.  University Course Timetabling with Soft Constraints , 2002, PATAT.

[15]  Stevan Jay Anastasoff,et al.  Evolving Mutation Rates for the Self-Optimisation of Genetic Algorithms , 1999, ECAL.

[16]  Luca Di Gaspero,et al.  Multi-neighbourhood Local Search with Application to Course Timetabling , 2002, PATAT.

[17]  Marco Dorigo,et al.  Genetic Algorithms and Highly Constrained Problems: The Time-Table Case , 1990, PPSN.

[18]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[19]  Edmund K. Burke,et al.  Examination Timetabling in British Universities: A Survey , 1995, PATAT.

[20]  Dipti Srinivasan,et al.  Automated time table generation using multiple context reasoning for university modules , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[21]  Kalyanmoy Deb,et al.  A Hybrid Multi-objective Evolutionary Approach to Engineering Shape Design , 2001, EMO.

[22]  Fernando G. Lobo,et al.  Genetic Land - Modeling land use change using evolutionary algorithms , 2007 .

[23]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[24]  Joshua D. Knowles A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).

[25]  Edmund K. Burke,et al.  Practice and Theory of Automated Timetabling IV , 2002, Lecture Notes in Computer Science.

[26]  Theodor J. Stewart,et al.  Using Simulated Annealing and Spatial Goal Programming for Solving a Multi Site Land Use Allocation Problem , 2003, EMO.

[27]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[28]  Agostinho Rosa,et al.  Two neighbourhood approaches to the timetabling problem , 2004 .

[29]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[30]  G. Nemhauser,et al.  Integer Programming , 2020 .

[31]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[32]  Heinz Mühlenbein,et al.  Parallel Genetic Algorithms, Population Genetics, and Combinatorial Optimization , 1989, Parallelism, Learning, Evolution.

[33]  Susan Craw,et al.  Applying Genetic Algorithms to Multi-Objective Land Use Planning , 2000, GECCO.

[34]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[35]  R. Lyndon While,et al.  A faster algorithm for calculating hypervolume , 2006, IEEE Transactions on Evolutionary Computation.

[36]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[37]  Kalyanmoy Deb,et al.  Design of optimum cross-sections for load-carrying members using multi-objective evolutionary algorithms , 2005 .

[38]  Nathaniel Macon,et al.  A Monte Carlo algorithm for assigning students to classes , 1966, CACM.

[39]  Ben Paechter,et al.  New crossover operators for timetabling with evolutionary algorithms. , 2004 .

[40]  N. Unni,et al.  Significance of landcover transformations and the fuelwood supply potentials of the biomass in the catchment of an Indian metropolis , 2000 .

[41]  Peter Ross,et al.  Fast Practical Evolutionary Timetabling , 1994, Evolutionary Computing, AISB Workshop.

[42]  Ben Paechter,et al.  A local search for the timetabling problem , 2002 .

[43]  Carsten Peterson,et al.  "Teachers and Classes" with Neural Networks , 1991, Int. J. Neural Syst..

[44]  K. Matthews,et al.  Applying Genetic Algorithms to Land Use Planning. , 1999 .

[45]  Chee-Kit Looi,et al.  Neural network methods in combinatorial optimization , 1992, Comput. Oper. Res..

[46]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[47]  Antonio Carneiro de Mesquita Filho,et al.  Chromosome representation through adjacency matrix in evolutionary circuits synthesis , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[48]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[49]  David Abramson,et al.  Constructing school timetables using simulated annealing: sequential and parallel algorithms , 1991 .

[50]  Els Ducheyne,et al.  Multiple objective forest management using GIS and genetic optimisation techniques , 2003 .

[51]  Weixiong Zhang,et al.  Modeling and Solving a Resource Allocation Problem with Soft Constraint Techniques , 2002 .

[52]  Sanja Petrovic,et al.  An Introduction to Multiobjective Metaheuristics for Scheduling and Timetabling , 2004, Metaheuristics for Multiobjective Optimisation.

[53]  Calvin C. Gotlieb,et al.  The Construction of Class-Teacher Time-Tables , 1962, IFIP Congress.

[54]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[55]  Carsten Peterson,et al.  Complex Scheduling with Potts Neural Networks , 1992, Neural Computation.

[56]  Keith R McCloy,et al.  Resource management information systems : process and practice , 1995 .

[57]  David R. Anderson,et al.  Mathematical Programming for Natural Resource Management , 1985 .

[58]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[59]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[60]  E. A. Akkoyunlu A Linear Algorithm for Computing the Optimum University Timetable , 1973, Comput. J..

[61]  James E. Ellis,et al.  Climate Patterns and Land-Use Practices in the Dry Zones of Africa , 1994 .

[62]  Suruchi Bhadwal,et al.  Carbon sequestration estimates for forestry options under different land-use scenarios in india , 2002 .

[63]  Luiz Antonio Nogueira Lorena,et al.  A Constructive Evolutionary Approach to School Timetabling , 2001, EvoWorkshops.

[64]  Toshihide Ibaraki,et al.  Resource allocation problems - algorithmic approaches , 1988, MIT Press series in the foundations of computing.

[65]  Ender Özcan,et al.  An Empirical Investigation on Memes, Self-generation and Nurse Rostering , 2006 .

[66]  P. Sánchez,et al.  Properties and Management of Soils in the Tropics , 1977 .

[67]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[68]  D. Costa,et al.  A tabu search algorithm for computing an operational timetable , 1994 .

[69]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[70]  Mahdi Al-Kaisi,et al.  Impact of Tillage and Crop Rotation Systems on Carbon Sequestration , 2001 .

[71]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[72]  Luca Di Gaspero,et al.  A Multineighbourhood Local Search Solver for the Timetabling Competition TTComp 2002 , 2004 .

[73]  Roberto Piola Evolutionary solutions to a highly constrained combinatorial problem , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[74]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[75]  Jeffrey H. Kingston,et al.  The Complexity of Timetable Construction Problems , 1995, PATAT.

[76]  Kalyanmoy Deb,et al.  Multi-Objective Evolutionary Algorithm for University Class Timetabling Problem , 2007, Evolutionary Scheduling.

[77]  Theodor J. Stewart,et al.  A genetic algorithm approach to multiobjective land use planning , 2004, Comput. Oper. Res..

[78]  Bernhard Sendhoff,et al.  A new approach to dynamics analysis of genetic algorithms without selection , 2005, 2005 IEEE Congress on Evolutionary Computation.

[79]  Margarida Vaz Pato,et al.  A Multiobjective Genetic Algorithm for the Class/Teacher Timetabling Problem , 2000, PATAT.

[80]  Peter L. Bartlett,et al.  Neural Network Learning - Theoretical Foundations , 1999 .

[81]  Patrick D. Surry,et al.  Formal Memetic Algorithms , 1994, Evolutionary Computing, AISB Workshop.

[82]  Ben Paechter,et al.  A Comparison of the Performance of Different Metaheuristics on the Timetabling Problem , 2002, PATAT.

[83]  Shuguang Liu,et al.  Carbon dynamics and land-use choices: building a regional-scale multidisciplinary model. , 2003, Journal of environmental management.

[84]  Shuguang Liu,et al.  SPATIAL-TEMPORAL CARBON SEQUESTRATION UNDER LAND USE AND LAND COVER CHANGE , 2004 .

[85]  Jared M. Diamond,et al.  THE ISLAND DILEMMA: LESSONS OF MODERN BIOGEOGRAPHIC STUDIES FOR THE DESIGN OF NATURAL RESERVES , 1975 .

[86]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[87]  Hsiao-Lan Fang,et al.  Genetic algorithms in timetabling and scheduling , 1995 .

[88]  John Tartar,et al.  Graph coloring conditions for the existence of solutions to the timetable problem , 1974, CACM.

[89]  Ben Paechter,et al.  An hyperheuristic approach to course timetabling problem using an evolutionary algorithm , .

[90]  Hugh M. Cartwright,et al.  The Application of the Genetic Algorithm to Two-Dimensional Strings: The Source Apportionment Problem , 1993, ICGA.

[91]  H. M. Steven,et al.  Forest Management , 2020, Nature.

[92]  K. Matthews,et al.  Implementation of a spatial decision support system for rural land use planning: integrating GIS and environmental models with search and optimisation algorithms , 1999 .

[93]  Susan Craw,et al.  Implementation of a spatial decision support system for rural land use planning: integrating geographic information system and environmental models with search and optimisation algorithms , 1999 .

[94]  Andrea Schaerf,et al.  REPORT RAPPORT , 2022 .

[95]  Aravind Srinivasan,et al.  Innovization: innovating design principles through optimization , 2006, GECCO.

[96]  Margarida Vaz Pato,et al.  A comparison of discrete and continuous neural network approaches to solve the class/teacher timetabling problem , 2004, Eur. J. Oper. Res..

[97]  G. Chartrand Introductory Graph Theory , 1984 .

[98]  Edmund K. Burke,et al.  Specialised Recombinative Operators for Timetabling Problems , 1995, Evolutionary Computing, AISB Workshop.

[99]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[100]  Unfccc Kyoto Protocol to the United Nations Framework Convention on Climate Change , 1997 .

[101]  David Abramson,et al.  A PARALLEL GENETIC ALGORITHM FOR SOLVING THE SCHOOL TIMETABLING PROBLEM , 1992 .

[102]  Jim Smith,et al.  Self adaptation of mutation rates in a steady state genetic algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[103]  D. de Werra Construction of School Timetables by Flow Methods. , 1971 .

[104]  Ben Paechter,et al.  A GA Evolving Instructions for a Timetable Builder , 2002 .

[105]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[106]  Andrea Schaerf,et al.  A Survey of Automated Timetabling , 1999, Artificial Intelligence Review.

[107]  Efthymios Housos,et al.  An integer programming formulation for a case study in university timetabling , 2004, Eur. J. Oper. Res..

[108]  Shuguang Liu,et al.  Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition , 2003 .

[109]  A. Tripathy School Timetabling---A Case in Large Binary Integer Linear Programming , 1984 .

[110]  Susan Craw,et al.  Using soft-systems methods to evaluate the outputs from multi-objective land use planning tools , 2002 .

[111]  Paul W. Fieguth,et al.  Forest structure optimization using evolutionary programming and landscape ecology metrics , 2005, Eur. J. Oper. Res..

[112]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .