Filamin C plays an essential role in the maintenance of the structural integrity of cardiac and skeletal muscles, revealed by the medaka mutant zacro.

[1]  Robert H. Brown,et al.  Mutations in the N-terminal actin-binding domain of filamin C cause a distal myopathy. , 2011, American journal of human genetics.

[2]  L. Zon,et al.  The zebrafish dag1 mutant: a novel genetic model for dystroglycanopathies. , 2011, Human molecular genetics.

[3]  R. Kley,et al.  The sarcomeric Z-disc component myopodin is a multiadapter protein that interacts with filamin and alpha-actinin. , 2010, European journal of cell biology.

[4]  Wei Zhang,et al.  A novel heterozygous deletion–insertion mutation (2695–2712 del/GTTTGT ins) in exon 18 of the filamin C gene causes filaminopathy in a large Chinese family , 2010, Neuromuscular Disorders.

[5]  J. Dowling,et al.  Zebrafish models of collagen VI-related myopathies , 2010, Human molecular genetics.

[6]  I. Ferrer,et al.  In-frame deletion in the seventh immunoglobulin-like repeat of filamin C in a family with myofibrillar myopathy , 2009, European Journal of Human Genetics.

[7]  C. McCulloch,et al.  The role of FilGAP-filamin A interactions in mechanoprotection. , 2009, Molecular biology of the cell.

[8]  Jeroen Bakkers,et al.  Zebrafish integrin-linked kinase is required in skeletal muscles for strengthening the integrin-ECM adhesion complex. , 2008, Developmental biology.

[9]  C. Heyer,et al.  Clinical and morphological phenotype of the filamin myopathy: a study of 31 German patients. , 2007, Brain : a journal of neurology.

[10]  M. Vorgerd,et al.  The pathomechanism of filaminopathy: altered biochemical properties explain the cellular phenotype of a protein aggregation myopathy. , 2007, Human molecular genetics.

[11]  L. Zon,et al.  Zebrafish orthologs of human muscular dystrophy genes , 2007, BMC Genomics.

[12]  L. Kunkel,et al.  Modeling human muscle disease in zebrafish. , 2007, Biochimica et biophysica acta.

[13]  L. Kunkel,et al.  Loss of FilaminC (FLNc) Results in Severe Defects in Myogenesis and Myotube Structure , 2006, Molecular and Cellular Biology.

[14]  Y. Gui,et al.  Delta-sarcoglycan is necessary for early heart and muscle development in zebrafish. , 2006, Biochemical and biophysical research communications.

[15]  A. Sonnenberg,et al.  The Z-disc proteins myotilin and FATZ-1 interact with each other and are connected to the sarcolemma via muscle-specific filamins , 2005, Journal of Cell Science.

[16]  Naoto Morikawa,et al.  Chicken gizzard filamin, retina filamin and cgABP260 are respectively, smooth muscle-, non-muscle- and pan-muscle-type isoforms: distribution and localization in muscles. , 2005, Cell motility and the cytoskeleton.

[17]  Hanns Lochmüller,et al.  A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. , 2005, American journal of human genetics.

[18]  L. Kunkel,et al.  Delta-sarcoglycan is required for early zebrafish muscle organization. , 2005, Experimental cell research.

[19]  C. Walsh,et al.  The many faces of filamin: A versatile molecular scaffold for cell motility and signalling , 2004, Nature Cell Biology.

[20]  Y. Kohara,et al.  Large-scale isolation of ESTs from medaka embryos and its application to medaka developmental genetics , 2004, Mechanisms of Development.

[21]  Roy Parker,et al.  Nonsense-mediated mRNA decay: terminating erroneous gene expression. , 2004, Current opinion in cell biology.

[22]  Andrea Superti-Furga,et al.  Mutations in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis , 2004, Nature Genetics.

[23]  K. Ohno,et al.  Myofibrillar myopathy: clinical, morphological and genetic studies in 63 patients. , 2004, Brain : a journal of neurology.

[24]  M. D'Addario,et al.  Regulation of Tension-induced Mechanotranscriptional Signals by the Microtubule Network in Fibroblasts* , 2003, Journal of Biological Chemistry.

[25]  R. Bryson-Richardson,et al.  Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo , 2003, Development.

[26]  C. Reggiani,et al.  Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency , 2003, Nature Genetics.

[27]  U. Mayer Integrins: Redundant or Important Players in Skeletal Muscle?* , 2003, The Journal of Biological Chemistry.

[28]  J. Ervasti Costameres: the Achilles' Heel of Herculean Muscle* 210 , 2003, The Journal of Biological Chemistry.

[29]  Charles E. Schwartz,et al.  Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans , 2003, Nature Genetics.

[30]  Adam P. Summers,et al.  The evolution of tendon--morphology and material properties. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[31]  M. D'Addario,et al.  Cell Death and Mechanoprotection by Filamin A in Connective Tissues after Challenge by Applied Tensile Forces* , 2002, The Journal of Biological Chemistry.

[32]  Didier Y. R. Stainier,et al.  Cardiac troponin T is essential in sarcomere assembly and cardiac contractility , 2002, Nature Genetics.

[33]  Mark C. Fishman,et al.  Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin , 2002, Nature Genetics.

[34]  M. D'Addario,et al.  Cytoprotection against Mechanical Forces Delivered through β1 Integrins Requires Induction of Filamin A* , 2001, The Journal of Biological Chemistry.

[35]  T. Nakata,et al.  Cytoplasmic γ Actin as a Z-Disc Protein , 2001 .

[36]  J. Hartwig,et al.  Filamins as integrators of cell mechanics and signalling , 2001, Nature Reviews Molecular Cell Biology.

[37]  G. Lanfranchi,et al.  FATZ, a Filamin-, Actinin-, and Telethonin-binding Protein of the Z-disc of Skeletal Muscle* , 2000, The Journal of Biological Chemistry.

[38]  S. Kempa,et al.  Indications for a Novel Muscular Dystrophy Pathway , 2000, The Journal of cell biology.

[39]  J. Ervasti,et al.  The Dystrophin Complex Forms a Mechanically Strong Link between the Sarcolemma and Costameric Actin , 2000, The Journal of cell biology.

[40]  Y. Ishikawa,et al.  Medakafish as a model system for vertebrate developmental genetics. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[41]  H. Hama,et al.  Biochemical evidence for association of dystrobrevin with the sarcoglycan-sarcospan complex as a basis for understanding sarcoglycanopathy. , 2000, Human molecular genetics.

[42]  M. Kondo,et al.  A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. , 2000, Genetics.

[43]  M. Gautel,et al.  Characterization of muscle filamin isoforms suggests a possible role of gamma-filamin/ABP-L in sarcomeric Z-disc formation. , 2000, Cell motility and the cytoskeleton.

[44]  Simon C Watkins,et al.  Filamin 2 (FLN2): A Muscle-specific Sarcoglycan Interacting Protein , 2000 .

[45]  R. Herken,et al.  Organization of the myotendinous junction is dependent on the presence of alpha7beta1 integrin. , 1999, Laboratory investigation; a journal of technical methods and pathology.

[46]  K. Inohaya,et al.  Analysis of the origin and development of hatching gland cells by transplantation of the embryonic shield in the fish, Oryzias latipes , 1999, Development, growth & differentiation.

[47]  D. Burkin,et al.  The α7β1 integrin in muscle development and disease , 1999, Cell and Tissue Research.

[48]  S. Kanner,et al.  Filamin binds to the cytoplasmic domain of the beta1-integrin. Identification of amino acids responsible for this interaction. , 1998, The Journal of biological chemistry.

[49]  E. Hoffman,et al.  Mutations in the integrin α7 gene cause congenital myopathy , 1998, Nature Genetics.

[50]  A. Sonnenberg,et al.  Spatial and temporal expression of the β1D integrin during mouse development , 1997 .

[51]  R. Fässler,et al.  Absence of integrin α7 causes a novel form of muscular dystrophy , 1997, Nature Genetics.

[52]  D A Kane,et al.  Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. , 1996, Development.

[53]  M. Passos-Bueno,et al.  Autosomal recessive limbgirdle muscular dystrophy, LGMD2F, is caused by a mutation in the δ–sarcoglycan gene , 1996, Nature Genetics.

[54]  Y. Ishikawa A recessive lethal mutation, tb, that bends the midbrain region of the neural tube in the early embryo of the medaka , 1996, Neuroscience Research.

[55]  L. Kunkel,et al.  Mutations in the Dystrophin-Associated Protein γ-Sarcoglycan in Chromosome 13 Muscular Dystrophy , 1995, Science.

[56]  J. Beckmann,et al.  β–sarcoglycan: characterization and role in limb–girdle muscular dystrophy linked to 4q12 , 1995, Nature Genetics.

[57]  L. Kunkel,et al.  β–sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex , 1995, Nature Genetics.

[58]  A. Ohyama,et al.  Temporal and spatial patterns of gene expression for the hatching enzyme in the teleost embryo, Oryzias latipes. , 1995, Developmental biology.

[59]  K. Campbell Three muscular dystrophies: Loss of cytoskeleton-extracellular matrix linkage , 1995, Cell.

[60]  T. Iwamatsu Stages of normal development in the medaka Oryzias latipes , 1994, Mechanisms of Development.

[61]  I. Nonaka,et al.  Selective defect of sarcoglycan complex in severe childhood autosomal recessive muscular dystrophy muscle. , 1994, Biochemical and biophysical research communications.

[62]  J. Beckmann,et al.  Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy , 1994, Cell.

[63]  A. Horwitz,et al.  Alpha 7 beta 1 integrin is a component of the myotendinous junction on skeletal muscle. , 1993, Journal of cell science.

[64]  E. Bonilla,et al.  Immunocytochemical study of dystrophin at the myotendinous junction , 1990, Muscle & nerve.

[65]  Y. Sunada,et al.  Dense immunostainings on both neuromuscular and myotendon junctions with an anti-dystrophin monoclonal anfibody , 1989 .

[66]  Simon C Watkins,et al.  Immunoelectron microscopic localization of dystrophin in myofibres , 1988, Nature.

[67]  Hideo Sugita,et al.  Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide , 1988, Nature.

[68]  Eric P. Hoffman,et al.  Dystrophin: The protein product of the duchenne muscular dystrophy locus , 1987, Cell.

[69]  Y. Taguchi Establishment of Inbred Strains of the Teleost, Oryzias latipes , 1980 .

[70]  J. Hartwig,et al.  Isolation and properties of actin, myosin, and a new actinbinding protein in rabbit alveolar macrophages. , 1975, The Journal of biological chemistry.

[71]  J. Hartwig,et al.  Interactions between actin, myosin, and an actin-binding protein from rabbit alveolar macrophages. Alveolar macrophage myosin Mg-2+-adenosine triphosphatase requires a cofactor for activation by actin. , 1975, The Journal of biological chemistry.

[72]  G. Anastasi,et al.  Dystrophin-glycoprotein complex and vinculin-talin-integrin system in human adult cardiac muscle. , 2009, International journal of molecular medicine.

[73]  G. Kirfel,et al.  Membrane ruffles in cell migration: indicators of inefficient lamellipodia adhesion and compartments of actin filament reorganization. , 2005, Experimental cell research.

[74]  M. Schartl,et al.  Medaka — a model organism from the far east , 2002, Nature Reviews Genetics.

[75]  M. Sasanuma,et al.  INDUCTION OF MUTATIONS BY ENU IN THE MEDAKA GERMLINE , 1999 .

[76]  A. Shimada,et al.  Sex-Linked Inheritance of the lf Locus in the Medaka Fish (Oryzias latipes) , 1998, Zoological science.