Asymptotics for argmin processes: Convexity arguments
暂无分享,去创建一个
[1] D. Pollard,et al. Asymptotics for minimisers of convex processes , 2011, 1107.3806.
[2] D. Pollard. Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.
[3] R. Koenker. Quantile Regression: Fundamentals of Quantile Regression , 2005 .
[4] P. Billingsley,et al. Convergence of Probability Measures , 1969 .
[5] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[6] R. Davies. Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .
[7] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[8] C. Gutenbrunner,et al. Regression Rank Scores and Regression Quantiles , 1992 .
[9] Richard A. Davis,et al. M-estimation for autoregressions with infinite variance , 1992 .
[10] Bruce E. Hansen,et al. Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .
[11] Roger Koenker,et al. Tests of linear hypotheses based on regression rank scores , 1993 .
[12] R. Dudley. An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions , 1985 .
[13] Roger Koenker,et al. L-Estimation for Linear Models , 1987 .
[14] K. Chan,et al. Testing for threshold autoregression , 1990 .
[15] Victor Chernozhukov,et al. Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure , 2004 .
[16] D. Pollard,et al. Cube Root Asymptotics , 1990 .
[17] M. Puri,et al. Autoregression quantiles and related rank score processes for generalized random coefficient autoregressive processes , 1998 .
[18] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[19] Mehmet Caner. A NOTE ON LEAST ABSOLUTE DEVIATION ESTIMATION OF A THRESHOLD MODEL , 2002, Econometric Theory.
[20] Wenjiang J. Fu,et al. Asymptotics for lasso-type estimators , 2000 .
[21] H. Koul. Some Convergence Theorems for Ranks and Weighted Empirical Cumulatives , 1970 .
[22] D. Pollard. Empirical Processes: Theory and Applications , 1990 .
[23] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[24] S. Portnoy. Asymptotic behavior of regression quantiles in non-stationary, dependent cases , 1991 .
[25] B. Hansen. Sample Splitting and Threshold Estimation , 2000 .
[26] V. Koltchinskii. Differentiability of Inverse Operators and Limit Theorems for Inverse Functions , 1998 .
[27] D. Pollard. Convergence of stochastic processes , 1984 .
[28] Wojciech Niemiro. Asymptotics for M-estimators defined by convex minimization , 1992 .
[29] R. Koenker,et al. Regression Quantiles , 2007 .
[30] Keith Knight,et al. Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .
[31] H. Koul. A weak convergence result useful in robust autoregression , 1991 .
[32] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[33] Asymptotic Behavior of Wilcoxon Type Confidence Regions in Multiple Linear Regression , 1969 .