Asymptotics for argmin processes: Convexity arguments

The convexity arguments developed by Pollard [D. Pollard, Asymptotics for least absolute deviation regression estimators, Econometric Theory 7 (1991) 186-199], Hjort and Pollard [N.L. Hjort, D. Pollard, Asymptotics for minimizers of convex processes, 1993 (unpublished manuscript)], and Geyer [C.J. Geyer, On the asymptotics of convex stochastic optimization, 1996 (unpublished manuscript)] are now basic tools for investigating the asymptotic behavior of M-estimators with non-differentiable convex objective functions. This paper extends the scope of convexity arguments to the case where estimators are obtained as stochastic processes. Our convexity arguments provide a simple proof for the asymptotic distribution of regression quantile processes. In addition to quantile regression, we apply our technique to LAD (least absolute deviation) inference for threshold regression.

[1]  D. Pollard,et al.  Asymptotics for minimisers of convex processes , 2011, 1107.3806.

[2]  D. Pollard Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.

[3]  R. Koenker Quantile Regression: Fundamentals of Quantile Regression , 2005 .

[4]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[5]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[6]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  C. Gutenbrunner,et al.  Regression Rank Scores and Regression Quantiles , 1992 .

[9]  Richard A. Davis,et al.  M-estimation for autoregressions with infinite variance , 1992 .

[10]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[11]  Roger Koenker,et al.  Tests of linear hypotheses based on regression rank scores , 1993 .

[12]  R. Dudley An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions , 1985 .

[13]  Roger Koenker,et al.  L-Estimation for Linear Models , 1987 .

[14]  K. Chan,et al.  Testing for threshold autoregression , 1990 .

[15]  Victor Chernozhukov,et al.  Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure , 2004 .

[16]  D. Pollard,et al.  Cube Root Asymptotics , 1990 .

[17]  M. Puri,et al.  Autoregression quantiles and related rank score processes for generalized random coefficient autoregressive processes , 1998 .

[18]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[19]  Mehmet Caner A NOTE ON LEAST ABSOLUTE DEVIATION ESTIMATION OF A THRESHOLD MODEL , 2002, Econometric Theory.

[20]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[21]  H. Koul Some Convergence Theorems for Ranks and Weighted Empirical Cumulatives , 1970 .

[22]  D. Pollard Empirical Processes: Theory and Applications , 1990 .

[23]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[24]  S. Portnoy Asymptotic behavior of regression quantiles in non-stationary, dependent cases , 1991 .

[25]  B. Hansen Sample Splitting and Threshold Estimation , 2000 .

[26]  V. Koltchinskii Differentiability of Inverse Operators and Limit Theorems for Inverse Functions , 1998 .

[27]  D. Pollard Convergence of stochastic processes , 1984 .

[28]  Wojciech Niemiro Asymptotics for M-estimators defined by convex minimization , 1992 .

[29]  R. Koenker,et al.  Regression Quantiles , 2007 .

[30]  Keith Knight,et al.  Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .

[31]  H. Koul A weak convergence result useful in robust autoregression , 1991 .

[32]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[33]  Asymptotic Behavior of Wilcoxon Type Confidence Regions in Multiple Linear Regression , 1969 .