Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity
暂无分享,去创建一个
[1] M. Jaros,et al. Wave Mechanics Applied to Semiconductor Heterostructures , 1991 .
[2] V. V. Zhikov,et al. Almost Periodic Functions and Differential Equations , 1983 .
[3] Naoufel Ben Abdallah,et al. Semiclassical analysis of the Schrödinger equation with a partially confining potential , 2005 .
[4] Weizhu Bao,et al. ON THE GROSS-PITAEVSKII EQUATION WITH STRONGLY ANISOTROPIC CONFINEMENT: FORMAL ASYMPTOTICS AND NUMERICAL EXPERIMENTS , 2005 .
[5] Guy Métivier,et al. Averaging theorems for conservative systems and the weakly compressible Euler equations , 2003 .
[6] Eric Polizzi,et al. Self-consistent three-dimensional models for quantum ballistic transport in open systems , 2002 .
[7] P. Gérard,et al. Opérateurs pseudo-différentiels et théorème de Nash-Moser , 1991 .
[8] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[9] B. Helffer. Théorie spectrale pour des opérateurs globalement elliptiques , 1984 .
[10] Olivier Pinaud,et al. Adiabatic Approximation of the Schrödinger-Poisson System with a Partial Confinement , 2005, SIAM J. Math. Anal..
[11] S. Schochet. Fast Singular Limits of Hyperbolic PDEs , 1994 .
[12] George A. Hagedorn,et al. A Time-Dependent Born–Oppenheimer Approximation with Exponentially Small Error Estimates , 2001 .
[13] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[14] E. Grenier. Oscillatory perturbations of the Navier Stokes equations , 1997 .
[15] P. Degond,et al. Diffusion Dynamics of Classical Systems Driven by an Oscillatory Force , 2006 .
[16] M. Gisclon,et al. FROM BLOCH MODEL TO THE RATE EQUATIONS II: THE CASE OF ALMOST DEGENERATE ENERGY LEVELS , 2004, math/0403298.
[17] W.-M. Wang,et al. Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations , 2007, 0805.3764.
[18] B. Helffer,et al. Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles , 1983 .
[19] David Lannes,et al. Nonlinear geometrical optics for oscillatory wave trains with a continuous oscillatory spectrum , 2001, Advances in Differential Equations.
[20] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[21] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[22] Pierre Degond,et al. From Bloch model to the rate equations , 2004 .
[23] P. Degond,et al. Large Time Dynamics of a Classical System Subject to a Fast Varying Force , 2007 .
[24] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[25] Christian Schmeiser,et al. The Nonlinear Schrödinger Equation with a Strongly Anisotropic Harmonic Potential , 2005, SIAM J. Math. Anal..
[26] D. Ferry,et al. Transport in nanostructures , 1999 .
[27] Stefan Teufel,et al. Adiabatic perturbation theory in quantum dynamics , 2003 .
[28] Olivier Pinaud,et al. Adiabatic approximation of the Schrödinger–Poisson system with a partial confinement: The stationary case , 2004 .
[29] Yuri Safarov,et al. AN INTRODUCTION TO SEMICLASSICAL AND MICROLOCAL ANALYSIS (Universitext) By ANDRÉ MARTINEZ: 190 pp., £49.00 (US$59.95), ISBN 0-387-95344-2 (Springer, New York, 2002) , 2003 .
[30] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[31] Tosio Kato. Perturbation theory for linear operators , 1966 .
[32] Risto M. Nieminen,et al. Electronic Properties of Two-Dimensional Systems , 1988 .
[33] Stefan Teufel,et al. Adiabatic Decoupling and Time-Dependent Born–Oppenheimer Theory , 2001 .
[34] F. Nier,et al. Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .
[35] C. Meunier,et al. Multiphase Averaging for Classical Systems: With Applications To Adiabatic Theorems , 1988 .
[36] J. Bony,et al. Espaces fonctionnels associés au calcul de Weyl-Hörmander , 1994 .
[37] André Martinez,et al. An Introduction to Semiclassical and Microlocal Analysis , 2002 .