Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity

Abstract We study the limiting behavior of a nonlinear Schrodinger equation describing a 3-dimensional gas that is strongly confined along the vertical, z direction. The confinement induces fast oscillations in time, that need to be averaged out. Since the Hamiltonian in the z direction is merely assumed confining, without any further specification, the associated spectrum is discrete but arbitrary, and the fast oscillations induced by the nonlinear equation entail countably many frequencies that are arbitrarily distributed. For that reason, averaging cannot rely on small denominator estimates or like. To overcome these difficulties, we prove that the fast oscillations are almost-periodic in time, with values in a Sobolev-like space that we completely identify. We then exploit the existence of long-time averages for almost-periodic functions to perform the necessary averaging procedure in our nonlinear problem.

[1]  M. Jaros,et al.  Wave Mechanics Applied to Semiconductor Heterostructures , 1991 .

[2]  V. V. Zhikov,et al.  Almost Periodic Functions and Differential Equations , 1983 .

[3]  Naoufel Ben Abdallah,et al.  Semiclassical analysis of the Schrödinger equation with a partially confining potential , 2005 .

[4]  Weizhu Bao,et al.  ON THE GROSS-PITAEVSKII EQUATION WITH STRONGLY ANISOTROPIC CONFINEMENT: FORMAL ASYMPTOTICS AND NUMERICAL EXPERIMENTS , 2005 .

[5]  Guy Métivier,et al.  Averaging theorems for conservative systems and the weakly compressible Euler equations , 2003 .

[6]  Eric Polizzi,et al.  Self-consistent three-dimensional models for quantum ballistic transport in open systems , 2002 .

[7]  P. Gérard,et al.  Opérateurs pseudo-différentiels et théorème de Nash-Moser , 1991 .

[8]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[9]  B. Helffer Théorie spectrale pour des opérateurs globalement elliptiques , 1984 .

[10]  Olivier Pinaud,et al.  Adiabatic Approximation of the Schrödinger-Poisson System with a Partial Confinement , 2005, SIAM J. Math. Anal..

[11]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[12]  George A. Hagedorn,et al.  A Time-Dependent Born–Oppenheimer Approximation with Exponentially Small Error Estimates , 2001 .

[13]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[14]  E. Grenier Oscillatory perturbations of the Navier Stokes equations , 1997 .

[15]  P. Degond,et al.  Diffusion Dynamics of Classical Systems Driven by an Oscillatory Force , 2006 .

[16]  M. Gisclon,et al.  FROM BLOCH MODEL TO THE RATE EQUATIONS II: THE CASE OF ALMOST DEGENERATE ENERGY LEVELS , 2004, math/0403298.

[17]  W.-M. Wang,et al.  Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations , 2007, 0805.3764.

[18]  B. Helffer,et al.  Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles , 1983 .

[19]  David Lannes,et al.  Nonlinear geometrical optics for oscillatory wave trains with a continuous oscillatory spectrum , 2001, Advances in Differential Equations.

[20]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[21]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[22]  Pierre Degond,et al.  From Bloch model to the rate equations , 2004 .

[23]  P. Degond,et al.  Large Time Dynamics of a Classical System Subject to a Fast Varying Force , 2007 .

[24]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[25]  Christian Schmeiser,et al.  The Nonlinear Schrödinger Equation with a Strongly Anisotropic Harmonic Potential , 2005, SIAM J. Math. Anal..

[26]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[27]  Stefan Teufel,et al.  Adiabatic perturbation theory in quantum dynamics , 2003 .

[28]  Olivier Pinaud,et al.  Adiabatic approximation of the Schrödinger–Poisson system with a partial confinement: The stationary case , 2004 .

[29]  Yuri Safarov,et al.  AN INTRODUCTION TO SEMICLASSICAL AND MICROLOCAL ANALYSIS (Universitext) By ANDRÉ MARTINEZ: 190 pp., £49.00 (US$59.95), ISBN 0-387-95344-2 (Springer, New York, 2002) , 2003 .

[30]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[31]  Tosio Kato Perturbation theory for linear operators , 1966 .

[32]  Risto M. Nieminen,et al.  Electronic Properties of Two-Dimensional Systems , 1988 .

[33]  Stefan Teufel,et al.  Adiabatic Decoupling and Time-Dependent Born–Oppenheimer Theory , 2001 .

[34]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[35]  C. Meunier,et al.  Multiphase Averaging for Classical Systems: With Applications To Adiabatic Theorems , 1988 .

[36]  J. Bony,et al.  Espaces fonctionnels associés au calcul de Weyl-Hörmander , 1994 .

[37]  André Martinez,et al.  An Introduction to Semiclassical and Microlocal Analysis , 2002 .