Refinery: Visual Exploration of Large, Heterogeneous Networks through Associative Browsing

Browsing is a fundamental aspect of exploratory information‐seeking. Associative browsing represents a common and intuitive set of exploratory strategies in which users step iteratively from familiar to novel bits of information. In this paper, we examine associative browsing as a strategy for bottom‐up exploration of large, heterogeneous networks. We present Refinery, an interactive visualization system informed by guidelines for associative browsing drawn from literature on exploratory information‐seeking. These guidelines motivate Refinery's query model, which allows users to simply and expressively construct queries using heterogeneous sets of nodes. This system computes degree‐of‐interest scores for associated content using a fast, random‐walk algorithm. Refinery visualizes query nodes within a subgraph of results, providing explanatory context, facilitating serendipitous discovery, and stimulating continued exploration. A study of 12 academic researchers using Refinery to browse publication data demonstrates how the system enables discovery of valuable new content, even within existing areas of expertise.

[1]  Stuart K. Card,et al.  Degree-of-interest trees: a component of an attention-reactive user interface , 2002, AVI '02.

[2]  Jeffrey Heer,et al.  DOITrees revisited: scalable, space-constrained visualization of hierarchical data , 2004, AVI.

[3]  Gary Marchionini,et al.  Exploratory search , 2006, Commun. ACM.

[4]  Kevin Li,et al.  Faceted metadata for image search and browsing , 2003, CHI '03.

[5]  Susan T. Dumais,et al.  The vocabulary problem in human-system communication , 1987, CACM.

[6]  Christos Faloutsos,et al.  Fast Random Walk with Restart and Its Applications , 2006, Sixth International Conference on Data Mining (ICDM'06).

[7]  Iain Campbell,et al.  The ostensive model of developing information needs , 2000 .

[8]  Catherine Plaisant,et al.  TreePlus: Interactive Exploration of Networks with Enhanced Tree Layouts , 2006, IEEE Transactions on Visualization and Computer Graphics.

[9]  Kerry Rodden,et al.  Does organisation by similarity assist image browsing? , 2001, CHI.

[10]  P. Pirolli,et al.  Spread of activation. , 1984 .

[11]  Arthur H. M. ter Hofstede,et al.  Query Formulation as an Information Retrieval Problem , 1996, Comput. J..

[12]  Nicholas J. Belkin,et al.  Interaction with Texts: Information Retrieval as Information-Seeking Behavior , 1993, Information Retrieval.

[13]  Robin Jeffries,et al.  Orienteering in an information landscape: how information seekers get from here to there , 1993, INTERCHI.

[14]  Aniket Kittur,et al.  Apolo: making sense of large network data by combining rich user interaction and machine learning , 2011, CHI.

[15]  Mark S. Ackerman,et al.  The perfect search engine is not enough: a study of orienteering behavior in directed search , 2004, CHI.

[16]  Gary Marchionini,et al.  From Information Retrieval to Information Interaction , 2004, ECIR.

[17]  Endel Tulving,et al.  Encoding specificity and retrieval processes in episodic memory. , 1973 .

[18]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[19]  Joemon M. Jose,et al.  An adaptive technique for content-based image retrieval , 2006, Multimedia Tools and Applications.

[20]  Martin Halvey,et al.  ViGOR: a grouping oriented interface for search and retrieval in video libraries , 2009, JCDL '09.

[21]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[22]  Ryen W. White,et al.  Supporting exploratory search , 2006 .

[23]  M. Sheelagh T. Carpendale,et al.  The information flaneur: a fresh look at information seeking , 2011, CHI.

[24]  Kwan-Liu Ma,et al.  Visual Recommendations for Network Navigation , 2011, Comput. Graph. Forum.

[25]  Frank van Ham,et al.  “Search, Show Context, Expand on Demand”: Supporting Large Graph Exploration with Degree-of-Interest , 2009, IEEE Transactions on Visualization and Computer Graphics.

[26]  Mika Käki,et al.  Findex: search result categories help users when document ranking fails , 2005, CHI.

[27]  John T. Stasko,et al.  Network-based visual analysis of tabular data , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[28]  Brad A. Myers,et al.  What to do when search fails: finding information by association , 2008, CHI.

[29]  Desney S. Tan,et al.  FacetLens: exposing trends and relationships to support sensemaking within faceted datasets , 2009, CHI.

[30]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[31]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[32]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[33]  Gary Marchionini,et al.  Finding facts vs. browsing knowledge in hypertext systems , 1988, Computer.

[34]  Jian Zhao,et al.  Interactive Exploration of Implicit and Explicit Relations in Faceted Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[35]  Marcia J. Bates,et al.  The design of browsing and berrypicking techniques for the online search interface , 1989 .

[36]  Michael S. Bernstein,et al.  Eddi: interactive topic-based browsing of social status streams , 2010, UIST.

[37]  Jana Urban,et al.  AN ADAPTIVE APPROACH TOWARDS CONTENT-BASED IMAGE RETRIEVAL , 2003 .

[38]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[39]  Yvonne Kammerer,et al.  Signpost from the masses: learning effects in an exploratory social tag search browser , 2009, CHI.

[40]  Susan T. Dumais,et al.  Discovery is never by chance: designing for (un)serendipity , 2009, C&C '09.