The Ekeland’s Principle and the Pareto ε-Efficiency

We present in this paper a new variant of Ekeland’s variational principle for vector valued functions with applications to the study of Pareto e-efficiency. A new existence result for Pareto efficiency is also presented.

[1]  I. Ekeland Nonconvex minimization problems , 1979 .

[2]  P. Loridan ε-solutions in vector minimization problems , 1984 .

[3]  Jean-Paul Penot,et al.  The drop theorem,the petal theorem and Ekeland's variational principle , 1986 .

[4]  I. Ekeland On the variational principle , 1974 .

[5]  J. Jahn Mathematical vector optimization in partially ordered linear spaces , 1986 .

[6]  Prior play in a deterministic differential game , 1982 .

[7]  V. Montesinos Drop property equals reflexivity , 1987 .

[8]  J. Daneš Equivalence of some geometric and related results of nonlinear functional analysis , 1985 .

[9]  J. Caristi,et al.  Fixed point theorems for mapping satisfying inwardness conditions , 1976 .

[10]  A. Peressini Ordered topological vector spaces , 1967 .

[11]  S. Rolewicz On ∆-uniform convexity and drop property , 1987 .

[12]  C. Tammer A generalization of ekellandz’s variational principle , 1992 .

[13]  T. Staib,et al.  On two generalizations of Pareto minimality , 1988 .

[14]  Mario Tosques,et al.  Methods of Nonconvex Analysis , 1990 .

[15]  P. Georgiev,et al.  The strong Ekeland variational principle, the strong Drop theorem and applications , 1988 .

[16]  Characterisation of drop and weak drop properties for closed bounded convex sets , 1991, Bulletin of the Australian Mathematical Society.

[17]  A generalization of the Brézis-Browder principle on ordered sets , 1982 .

[18]  A. B. Németh Between Pareto efficiency and Pareto ε-efficiency , 1989 .

[19]  G. Isac Pareto Optimization in Infinite Dimensional Spaces: The Importance of Nuclear Cones , 1994 .

[20]  Philippe Vincke,et al.  Multicriteria Decision-Aid , 1992 .

[21]  The ε-variational principle revisited , 1990 .

[22]  W. Oettli,et al.  Equivalents of Ekeland's principle , 1993, Bulletin of the Australian Mathematical Society.

[23]  J. Banaś On drop property and nearly uniformly smooth Banach spaces , 1990 .

[24]  S. Rolewicz On drop property , 1987 .

[25]  F. Browder,et al.  A general principle on ordered sets in nonlinear functional analysis , 1976 .

[26]  B. Sims,et al.  On the drop and weak drop properties for a Banach space , 1990, Bulletin of the Australian Mathematical Society.

[27]  I. Váyi Approximate saddle-point theorems in vector optimization , 1987 .

[28]  A. B. Németh A nonconvex vector minimization problem , 1986 .

[29]  Christiane Tammer,et al.  A variational principle and a fixed point theorem , 1993, System Modelling and Optimization.