Cnidarian Zic Genes.

[1]  F. Rentzsch,et al.  The cellular and molecular basis of cnidarian neurogenesis , 2016, Wiley interdisciplinary reviews. Developmental biology.

[2]  M. Martindale,et al.  MAPK signaling is necessary for neurogenesis in Nematostella vectensis , 2016, BMC Biology.

[3]  F. Rentzsch,et al.  Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8 , 2016, Development.

[4]  F. Rentzsch,et al.  The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration , 2016, Wiley interdisciplinary reviews. Developmental biology.

[5]  G. Richards,et al.  Regulation of Nematostella neural progenitors by SoxB, Notch and bHLH genes , 2015, Development.

[6]  T. Fujisawa,et al.  Sequential actions of β-catenin and Bmp pattern the oral nerve net in Nematostella vectensis , 2014, Nature Communications.

[7]  G. Richards,et al.  Transgenic analysis of a SoxB gene reveals neural progenitor cells in the cnidarian Nematostella vectensis , 2014, Development.

[8]  F. Rentzsch,et al.  RGM regulates BMP-mediated secondary axis formation in the sea anemone Nematostella vectensis. , 2014, Cell reports.

[9]  K. Umbers,et al.  Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis , 2014, BMC Evolutionary Biology.

[10]  M. Martindale,et al.  Non-canonical Notch signaling represents an ancestral mechanism to regulate neural differentiation , 2014, EvoDevo.

[11]  S. Leys,et al.  Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges , 2014, BMC Evolutionary Biology.

[12]  Johannes Jaeger,et al.  A quantitative atlas of Even-skipped and Hunchback expression in Clogmia albipunctata (Diptera: Psychodidae) blastoderm embryos , 2014, EvoDevo.

[13]  Henriette Busengdal,et al.  The Bilaterian Head Patterning Gene six3/6 Controls Aboral Domain Development in a Cnidarian , 2013, PLoS biology.

[14]  U. Frank,et al.  Hydractinia, a pioneering model for stem cell biology and reprogramming somatic cells to pluripotency. , 2012, The International journal of developmental biology.

[15]  M. Martindale,et al.  Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway , 2012, Development.

[16]  F. Rentzsch,et al.  Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms , 2012, Development.

[17]  A. Fujiyama,et al.  Using the Acropora digitifera genome to understand coral responses to environmental change , 2011, Nature.

[18]  Toshio Takahashi,et al.  Morphological and Molecular Analysis of the Nematostella vectensis Cnidom , 2011, PloS one.

[19]  R. Tucker,et al.  Ultrastructure of the mesoglea of the sea anemone Nematostella vectensis (Edwardsiidae) , 2011 .

[20]  M. Martindale,et al.  Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans , 2010, EvoDevo.

[21]  M. Manuel,et al.  Clytia hemisphaerica: a jellyfish cousin joins the laboratory. , 2010, Trends in genetics : TIG.

[22]  M. Martindale,et al.  Assessing the root of bilaterian animals with scalable phylogenomic methods , 2009, Proceedings of the Royal Society B: Biological Sciences.

[23]  Grigory Genikhovich,et al.  BMPs and Chordin regulate patterning of the directive axis in a sea anemone , 2009, Proceedings of the National Academy of Sciences.

[24]  David Q. Matus,et al.  Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian , 2009, Developmental neurobiology.

[25]  J. Aruga,et al.  Expression pattern of annelid Zic in embryonic development of the oligochaete Tubifex tubifex , 2008, Development Genes and Evolution.

[26]  Nicholas H. Putnam,et al.  The Trichoplax genome and the nature of placozoans , 2008, Nature.

[27]  David Q. Matus,et al.  Broad phylogenomic sampling improves resolution of the animal tree of life , 2008, Nature.

[28]  K. Mikoshiba,et al.  Zic2 and Zic3 synergistically control neurulation and segmentation of paraxial mesoderm in mouse embryo. , 2007, Developmental biology.

[29]  Christa S Merzdorf,et al.  Emerging roles for zic genes in early development , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[30]  K. Mikoshiba,et al.  A wide-range phylogenetic analysis of Zic proteins: implications for correlations between protein structure conservation and body plan complexity. , 2006, Genomics.

[31]  Fuki Gyoja Expression of a muscle determinant gene, macho-1, in the anural ascidian Molgula tectiformis , 2006, Development Genes and Evolution.

[32]  J. Finnerty,et al.  Rising starlet: the starlet sea anemone, Nematostella vectensis. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[33]  T. Fujisawa,et al.  Involvement of Hydra achaete–scute gene CnASH in the differentiation pathway of sensory neurons in the tentacles , 2004, Development Genes and Evolution.

[34]  J. Aruga The role of Zic genes in neural development , 2004, Molecular and Cellular Neuroscience.

[35]  T. Holstein,et al.  Hyzic, the Hydra homolog of the zic/odd-paired gene, is involved in the early specification of the sensory nematocytes , 2004, Development.

[36]  Andy Greenfield,et al.  Zic2 is required for neural crest formation and hindbrain patterning during mouse development. , 2003, Developmental biology.

[37]  N. Gostling,et al.  Protochordate Zic genes define primitive somite compartments and highlight molecular changes underlying neural crest evolution , 2003, Evolution & development.

[38]  H. Saiga,et al.  HrzicN, a new Zic family gene of ascidians, plays essential roles in the neural tube and notochord development , 2002, Development.

[39]  C. Kenyon,et al.  The zinc finger protein REF-2 functions with the Hox genes to inhibit cell fusion in the ventral epidermis of C. elegans. , 2002, Development.

[40]  François Guillemot,et al.  Proneural genes and the specification of neural cell types , 2002, Nature Reviews Neuroscience.

[41]  K. Mikoshiba,et al.  A novel member of the Xenopus Zic family, Zic5, mediates neural crest development , 2000, Mechanisms of Development.

[42]  K. Mizuseki,et al.  Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. , 1998, Development.

[43]  K. Mikoshiba,et al.  The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. , 1997, Developmental biology.

[44]  D M Cimbora,et al.  Drosophila midgut morphogenesis requires the function of the segmentation gene odd-paired. , 1995, Developmental biology.

[45]  T. Holstein,et al.  Sensory receptor with bilateral symmetrical polarity , 1985, Naturwissenschaften.

[46]  R. Williams Studies on the nematosomes of Nematostella vectensis Stephenson (Coelenterata: Actiniaria) , 1979 .

[47]  R. Williams A redescription of the brackish-water sea anemone Nematostella vectensis Stephenson, with an appraisal of congeneric species , 1975 .

[48]  C. N. David,et al.  Distribution of Interstitial Cells and Differentiating Nematocytes in Nests in Hydra attenuata , 1974 .

[49]  M. Brinkmann,et al.  Mechanoelectric transduction in nematocytes of a hydropolyp (Corynidae) , 2004, Journal of Comparative Physiology A.

[50]  M. Benedyk,et al.  odd-paired: a zinc finger pair-rule protein required for the timely activation of engrailed and wingless in Drosophila embryos. , 1994, Genes & development.

[51]  H. Bode,et al.  Regulation of a multipotent stem cell, the interstitial cell of hydra. , 1978, Progress in biophysics and molecular biology.