Flapping Wing Aerodynamics: Progress and Challenges

It is the objective of this paper to review recent developments in the understanding and prediction of flapping-wing aerodynamics. To this end, several flapping-wing configurations are considered. First, the problem of single flapping wings is treated with special emphasis on the dependence of thrust, lift, and propulsive efficiency on flapping mode, amplitude, frequency, and wing shape. Second, the problem of hovering flight is studied for single flapping wings. Third, the aerodynamic phenomena and benefits produced by the flapping-wing interactions on tandem wings or biplane configurations are discussed. Such interactions occur on dragonflies or on a recently developed micro air vehicle. The currently available two- and three-dimensional inviscid and viscous flapping-wing flow solutions are presented. It is shown that the results are strongly dependent on flapping frequency, amplitude, and Reynolds number. These findings are substantiated by comparison with the available experimental data.

[1]  Jeff D. Eldredge,et al.  High-Amplitude Pitch of a Flat Plate: An Abstraction of Perching and Flapping , 2009 .

[2]  U. Gulcat,et al.  Propulsive Force of a Flexible Flapping Thin Airfoil , 2009 .

[3]  James E. Hubbard,et al.  Computational Study of Flexible Wing Ornithopter Flight , 2008 .

[4]  D. Kurtulus,et al.  Aerodynamic characteristics of flapping motion in hover , 2007 .

[5]  Joseph C. S. Lai,et al.  Mechanisms Influencing the Efficiency of Oscillating Airfoil Propulsion , 2007 .

[6]  Tee Tai Lim,et al.  Wake-Structure Formation of a Heaving Two-Dimensional Elliptic Airfoil , 2007 .

[7]  Ken Badcock,et al.  Computational Fluid Dynamics Study of Three-Dimensional Dynamic Stall of Various Planform Shapes , 2007 .

[8]  Joseph C. S. Lai,et al.  Vortex lock-in phenomenon in the wake of a plunging airfoil , 2007 .

[9]  Sam Heathcote,et al.  Effect of Spanwise Flexibility on Flapping Wing Propulsion , 2006 .

[10]  Wei Shyy,et al.  Laminar-Turbulent Transition of a Low Reynolds Number Rigid or Flexible Airfoil , 2006 .

[11]  Kevin Knowles,et al.  Aerodynamic modelling of insect-like flapping flight for micro air vehicles , 2006 .

[12]  Kevin Knowles,et al.  Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 1: Methodology and analysis , 2006 .

[13]  Joseph C. S. Lai,et al.  Numerical Simulation and Parameter Variation of Insect Wing Motion based on Dragonfly Hovering , 2006 .

[14]  M. Triantafyllou,et al.  Numerical experiments on flapping foils mimicking fish-like locomotion , 2005 .

[15]  Max F. Platzer,et al.  Bio-inspired design of flapping-wing micro air vehicles , 2005, The Aeronautical Journal (1968).

[16]  R. Ramamurti,et al.  Computational fluid dynamics study of unconventional air vehicle configurations , 2005, The Aeronautical Journal (1968).

[17]  Julio Soria,et al.  Using stereo multigrid DPIV (SMDPIV) measurements to investigate the vortical skeleton behind a finite-span flapping wing , 2005 .

[18]  Sam Heathcote,et al.  Flexible flapping airfoil propulsion at low Reynolds numbers , 2005 .

[19]  D. Kurtulus,et al.  Unsteady Aerodynamics of Flapping Airfoil in Hovering Flight at Low Reynolds Numbers , 2005 .

[20]  Max F. Platzer,et al.  Analysis of Low-Speed Unsteady Airfoil Flows , 2005 .

[21]  Ismail H. Tuncer,et al.  Optimization of Flapping Airfoils for Maximum Thrust and Propulsive Efficiency , 2005 .

[22]  F.S. Hover,et al.  Review of experimental work in biomimetic foils , 2004, IEEE Journal of Oceanic Engineering.

[23]  John Young,et al.  Oscillation Frequency and Amplitude Effects on the Wake of a Plunging Airfoil , 2004 .

[24]  K. Isogai,et al.  Unsteady Three -Dimensional Viscous Flow Simulation of a Dragonfly Hovering , 2004 .

[25]  Paolo Blondeaux,et al.  Propulsive efficiency of oscillating foils , 2004 .

[26]  Kirill V. Rozhdestvensky,et al.  Aerohydrodynamics of flapping-wing propulsors , 2003 .

[27]  Chih-Ming Ho,et al.  Unsteady aerodynamics and flow control for flapping wing flyers , 2003 .

[28]  Adrian L. R. Thomas,et al.  Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency , 2003, Nature.

[29]  H. Haj-Hariri,et al.  Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow , 2003, Journal of Fluid Mechanics.

[30]  J. Soria,et al.  Flow structures behind a heaving and pitching finite-span wing , 2003, Journal of Fluid Mechanics.

[31]  Sam Heathcote,et al.  Flexible Flapping Airfoil Propulsion at Zero Freestream Velocity , 2003 .

[32]  Ismail H. Tuncer,et al.  Thrust Generation Caused by Flapping Airfoils in a Biplane Configuration , 2003 .

[33]  Hao Liu,et al.  Computational Biological Fluid Dynamics: Digitizing and Visualizing Animal Swimming and Flying1 , 2002, Integrative and comparative biology.

[34]  Michael S. Triantafyllou,et al.  Three-dimensional flow structures and vorticity control in fish-like swimming , 2002, Journal of Fluid Mechanics.

[35]  R. Zbikowski On aerodynamic modelling of an insect–like flapping wing in hover for micro air vehicles , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  M. F. Platzer,et al.  A Numerical and Experimental Investigation of Flapping-Wing Propulsion in Ground Effect , 2002 .

[37]  Koji Isogai,et al.  Study on aerodynamic mechanism of hovering insects , 2001 .

[38]  M. Dickinson,et al.  The control of flight force by a flapping wing: lift and drag production. , 2001, The Journal of experimental biology.

[39]  Ravi Ramamurti,et al.  Computational study of 3-D flapping foil flows , 2001 .

[40]  Thomas J. Mueller,et al.  Euler Solutions for a Finite-Span Flapping Wing , 2001 .

[41]  Thomas J. Mueller,et al.  Leading-Edge Vortices of Flapping and Rotary Wings at Low Reynolds Number , 2001 .

[42]  Thomas J. Mueller,et al.  Experimental and Computational Investigation of Flapping Wing Propulsion for Micro Air Vehicles , 2001 .

[43]  R. Ramamurti,et al.  Simulation of Flow About Flapping Airfoils Using Finite Element Incompressible Flow Solver , 2001 .

[44]  S. Sunada,et al.  Unsteady Forces on a Two-Dimensional Wing in Plunging and Pitching Motions , 2001 .

[45]  Max F. Platzer,et al.  Characteristics of a Plunging Airfoil at Zero Freestream Velocity , 2001 .

[46]  Max F. Platzer,et al.  Computational Study of Flapping Airfoil Aerodynamics , 2000 .

[47]  J. Kukalová-Peck,et al.  Flight adaptations in Palaeozoic Palaeoptera (Insecta) , 2000, Biological reviews of the Cambridge Philosophical Society.

[48]  Wei Shyy,et al.  Flapping and flexible wings for biological and micro air vehicles , 1999 .

[49]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[50]  J. Lai,et al.  Jet characteristics of a plunging airfoil , 1999 .

[51]  K. Isogai,et al.  Effects of Dynamic Stall on Propulsive Efficiency and Thrust of Flapping Airfoil , 1999 .

[52]  Ismail H. Tuncer,et al.  A computational study on the dynamic stall of a flapping airfoil , 1998 .

[53]  M. Triantafyllou,et al.  Oscillating foils of high propulsive efficiency , 1998, Journal of Fluid Mechanics.

[54]  Ellington,et al.  A computational fluid dynamic study of hawkmoth hovering , 1998, The Journal of experimental biology.

[55]  C. M. Dohring,et al.  Experimental and Computational Investigation of the Knoller-Betz Effect , 1998 .

[56]  Max F. Platzer,et al.  Time-domain analysis of low-speed airfoil flutter , 1996 .

[57]  Max F. Platzer,et al.  Thrust Generation due to Airfoil Flapping , 1996 .

[58]  Dickinson,et al.  THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS , 1994, The Journal of experimental biology.

[59]  Max Platzer,et al.  Aerodynamic analysis of flapping wing propulsion , 1993 .

[60]  M. Dickinson,et al.  UNSTEADY AERODYNAMIC PERFORMANCE OF MODEL WINGS AT LOW REYNOLDS NUMBERS , 1993 .

[61]  Peter Freymuth,et al.  Thrust generation by an airfoil in hover modes , 1990 .

[62]  Marvin Luttges,et al.  Dragonfly unsteady aerodynamics - The role of the wing phase relations in controlling the produced flows , 1989 .

[63]  Marvin Luttges,et al.  Visualization of unsteady separated flow produced by mechanically driven dragonfly wing kinematics model , 1988 .

[64]  Ngai-Huat Teng,et al.  The development of a computer code (U2DIIF)--for the numerical solution of unsteady , 1987 .

[65]  M. Luttges,et al.  Three-dimensional flow produced by a pitching-plunging model dragonfly wing , 1987 .

[66]  M. Koochesfahani Vortical patterns in the wake of an oscillating airfoil , 1987 .

[67]  C. E. Lan,et al.  The unsteady quasi-vortex-lattice method with applications to animal propulsion , 1979, Journal of Fluid Mechanics.

[68]  R. Norberg Hovering Flight of the Dragonfly Aeschna Juncea L., Kinematics and Aerodynamics , 1975 .

[69]  T. Kármán General aerodynamic theory. Perfect fluids , 1963 .

[70]  I. E. Garrick Propulsion of a flapping and oscillating airfoil , 1936 .

[71]  T. Theodorsen General Theory of Aerodynamic Instability and the Mechanism of Flutter , 1934 .

[72]  Walter Birnbaum,et al.  Das ebene Problem des schlagenden Flügels , 1924 .

[73]  R Katzmayr,et al.  Effect of Periodic Changes of Angle of Attack on Behavior of Airfoils , 1922 .