Optimized Schwarz and 2-Lagrange Multiplier Methods for Multiscale Elliptic PDEs

In this article, we formulate and analyze a two-level preconditioner for optimized Schwarz and 2-Lagrange multiplier methods for PDEs with highly heterogeneous (multiscale) diffusion coefficients. The preconditioner is equipped with an automatic coarse space consisting of low-frequency modes of approximate subdomain Dirichlet-to-Neumann maps. Under a suitable change of basis, the preconditioner is a $2 \times 2$ block upper triangular matrix with the identity matrix in the upper-left block. We show that the spectrum of the preconditioned system is included in the disk having center $z=1/2$ and radius $r=1/2 - \epsilon$, where $0 < \epsilon < 1/2$ is a parameter that we can choose. We further show that the GMRES algorithm applied to our heterogeneous system converges in $O(1/\epsilon)$ iterations (neglecting certain polylogarithmic terms). The number $\epsilon$ can be made arbitrarily large by automatically enriching the coarse space. Our theoretical results are confirmed by numerical experiments.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  Martin J. Gander,et al.  shallow-water equations: preliminary results , 2022 .

[3]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[4]  Sébastien Loisel,et al.  Sharp Condition Number Estimates for the Symmetric 2-Lagrange Multiplier Method , 2013, Domain Decomposition Methods in Science and Engineering XX.

[5]  George Karypis,et al.  A Software Package for Partitioning Unstructured Graphs , Partitioning Meshes , and Computing Fill-Reducing Orderings of Sparse Matrices Version 5 . 0 , 1998 .

[6]  Frédéric Nataf,et al.  Analysis of a Two-level Schwarz Method with Coarse Spaces Based on Local Dirichlet-to-Neumann Maps , 2012, Comput. Methods Appl. Math..

[7]  Ian G. Graham,et al.  Unstructured Additive Schwarz-Conjugate Gradient Method for Elliptic Problems with Highly Discontinuous Coefficients , 1999, SIAM J. Sci. Comput..

[8]  Olof B. Widlund,et al.  Dual and dual-primal FETI methods for elliptic problems with discontinuous co-efficients in three dimensions , 2001 .

[9]  Barry F. Smith,et al.  Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions , 1994 .

[10]  Michele Benzi,et al.  Algebraic theory of multiplicative Schwarz methods , 2001, Numerische Mathematik.

[11]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[12]  Eero Vainikko,et al.  Additive Schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients , 2007, Computing.

[13]  O. Widlund,et al.  Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions , 1994 .

[14]  Robert Scheichl,et al.  A robust two-level domain decomposition preconditioner for systems of PDEs , 2011 .

[15]  R. Nicolaides Deflation of conjugate gradients with applications to boundary value problems , 1987 .

[16]  Marcelo J.S. de Lemos,et al.  Heat transfer in enclosures having a fixed amount of solid material simulated with heterogeneous and homogeneous models , 2005 .

[17]  Ludmil T. Zikatanov,et al.  Weak Approximation Properties of Elliptic Projections with Functional Constraints , 2011, Multiscale Model. Simul..

[18]  Sébastien Loisel,et al.  Condition Number Estimates and Weak Scaling for 2-Level 2-Lagrange Multiplier Methods for General Domains and Cross Points , 2015, SIAM J. Sci. Comput..

[19]  Cornelis Vuik,et al.  Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods , 2009, J. Sci. Comput..

[20]  M. Embree How Descriptive are GMRES Convergence Bounds? , 1999, ArXiv.

[21]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[22]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[23]  Sébastien Loisel,et al.  The 2-Lagrange Multiplier Method Applied to Nonlinear Transmission Problems for the Richards Equation in Heterogeneous Soil with Cross Points , 2014, SIAM J. Sci. Comput..

[24]  Jinchao Xu,et al.  UNIFORM CONVERGENT MULTIGRID METHODS FOR ELLIPTIC PROBLEMS WITH STRONGLY DISCONTINUOUS COEFFICIENTS , 2008 .

[25]  P. He,et al.  Simulation of heat conduction in nanocomposite using energy-conserving dissipative particle dynamics , 2007 .

[26]  Ludmil T. Zikatanov,et al.  Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids , 2012, SIAM J. Numer. Anal..

[27]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs , 2008, Numerische Mathematik.

[28]  Olof B. Widlund,et al.  Towards a Unified Theory of Domain Decomposition Algorithms for Elliptic Problems , 2015 .

[29]  Frédéric Nataf,et al.  Spillane, N. and Dolean Maini, Victorita and Hauret, P. and Nataf, F. and Pechstein, C. and Scheichl, R. (2013) Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2018 .

[30]  Sébastien Loisel,et al.  On the geometric convergence of optimized Schwarz methods with applications to elliptic problems , 2010, Numerische Mathematik.

[31]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[32]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[33]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[34]  Olof B. Widlund,et al.  29. Optimization of Interface Operator Based on Algebraic Approach , 2003 .

[35]  Hua Xiang,et al.  A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps , 2011, SIAM J. Sci. Comput..

[36]  T. Hou,et al.  Multiscale Domain Decomposition Methods for Elliptic Problems with High Aspect Ratios , 2002 .

[37]  Martin J. Gander,et al.  The Optimized Schwarz Method with a Coarse Grid Correction , 2012, SIAM J. Sci. Comput..

[38]  I. Graham,et al.  Parallel computation of flow in heterogeneous media modelled by mixed finite elements , 2000 .

[39]  C. Farhat,et al.  Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems , 2000 .

[40]  Frédéric Nataf,et al.  Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method , 2013 .

[41]  Anastasios Karangelis,et al.  Solving large systems on HECToR using the 2-lagrange multiplier methods , 2014 .

[42]  Sébastien Loisel,et al.  Condition Number Estimates for the Nonoverlapping Optimized Schwarz Method and the 2-Lagrange Multiplier Method for General Domains and Cross Points , 2013, SIAM J. Numer. Anal..

[43]  Yunrong Zhu,et al.  Domain decomposition preconditioners for elliptic equations with jump coefficients , 2008, Numer. Linear Algebra Appl..

[44]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[45]  J. Mandel,et al.  Hybrid Domain Decomposition with Unstructured Subdomains , 2022 .

[46]  Tobin A. Driscoll,et al.  From Potential Theory to Matrix Iterations in Six Steps , 1998, SIAM Rev..

[47]  Sébastien Loisel,et al.  On the Convergence of Optimized Schwarz Methods by way of Matrix Analysis , 2009 .

[48]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[49]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[50]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[51]  Andrew F. B. Tompson,et al.  Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media , 1990 .

[52]  Robert Scheichl,et al.  Weighted Poincaré inequalities , 2013 .