Control and explanation in a signal understanding environment

To interpret sensor signals like images, image sequences, or continuous speech the representation and use of task-specific knowledge is necessary. The paper presents a framework for the representation of declarative and procedural knowledge using a suitable definition of a semantic network. Based on that formalism a problem-independent control algorithm for the interpretation of sensor signals is presented. It provides both data-driven and model-driven control structures which can easily be combined to perform any mixed strategy. An explanation facility is available which makes the development of complex knowledge bases easier and increases the acceptance of such a knowledge-based analysis system.

[1]  William J. Clancey,et al.  NEOMYCIN: Reconfiguring a Rule-Based Expert System for Application to Teaching , 1981, IJCAI.

[2]  Lucien Tesnière Éléments de syntaxe structurale , 1959 .

[3]  Franz Kummert,et al.  Knowledge based systems for speech understanding , 1988 .

[4]  Franz Kummert,et al.  The Interaction of Word Recognition and Linguistic Processing in Speech Understanding , 1992 .

[5]  Victor Lesser,et al.  Organization of the Hearsay II speech understanding system , 1975 .

[6]  Heinrich Niemann,et al.  ERNEST: A Semantic Network System for Pattern Understanding , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[8]  William R. Swartout Knowledge needed for expert system explanation , 1899 .

[9]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[10]  Andrew Sohn,et al.  Representing and Processing Production Systems in Connectionist Architectures , 1990, Int. J. Pattern Recognit. Artif. Intell..

[11]  Heinrich Niemann,et al.  Methods of Artificial Intelligence in Medical Imaging , 1992 .

[12]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[13]  Hans-Hellmut Nagel,et al.  From image sequences towards conceptual descriptions , 1988, Image Vis. Comput..

[14]  Didier Dubois,et al.  Possibilistic Logic, Preferential Models, Non-monotonicity and Related Issues , 1991, IJCAI.

[15]  Franz Kummert,et al.  A flexible control strategy with multilevel judgements for a knowledge based speech understanding system , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[16]  Steven Michael Rubin,et al.  The argos image understanding system. , 1978 .

[17]  Heinrich Niemann Pattern Analysis and Understanding , 1990 .

[18]  Masahiko Yachida,et al.  A Versatile Machine Vision System for Complex Industrial Parts , 1977, IEEE Transactions on Computers.

[19]  Heinrich Niemann,et al.  A Knowledge Based System for Analysis of Gated Blood Pool Studies , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Heinrich Niemann,et al.  Eine Inferenzkomponente für die Bildsequenzanalyse , 1991, DAGM-Symposium.

[21]  Allen Newell,et al.  Production Systems: Models of Control Structures , 1973 .

[22]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  L. A. Zedeh Knowledge representation in fuzzy logic , 1989 .

[24]  John Yen,et al.  Generalizing Term Subsumption Languages to Fuzzy Logic , 1991, IJCAI.

[25]  Makoto Nagao,et al.  A Structural Analysis of Complex Aerial Photographs , 1980, Advanced Applications in Pattern Recognition.

[26]  Heinrich Niemann,et al.  Das ISADORA-System - ein akustisch-phonetisches Netzwerk zur automatischen Spracherkennung , 1991, DAGM-Symposium.

[27]  Martin D. Levine,et al.  Low Level Image Segmentation: An Expert System , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Gerhard Sagerer,et al.  Ein System zur automatischen Analyse von Sequenzszintigrammen des Herzens , 1990 .

[29]  Renato De Mori,et al.  Computer Models of Speech Using Fuzzy Algorithms , 1983, Advanced Applications in Pattern Recognition.

[30]  Hector J. Levesque,et al.  An overview of Knowledge Representation , 1983, On Conceptual Modelling.

[31]  Hiroaki Kitano,et al.  Massively Parallel Memory-Based Parsing , 1991, IJCAI.

[32]  Franz Kummert,et al.  Flexible Steuerung eines sprachverstehenden Systems mit homogener Wissensbasis , 1992, DISKI.

[33]  Bruce T. Lowerre,et al.  The HARPY speech recognition system , 1976 .

[34]  Geoffrey E. Hinton Mapping Part-Whole Hierarchies into Connectionist Networks , 1990, Artif. Intell..

[35]  Balakrishnan Chandrasekaran,et al.  Explanation: the role of control strategies and deep models , 1987 .