The FIRST Classifier: compact and extended radio galaxy classification using deep Convolutional Neural Networks

Upcoming surveys with new radio observatories such as the Square Kilometer Array will generate a wealth of imaging data containing large numbers of radio galaxies. Different classes of radio galaxies can be used as tracers of the cosmic environment, including the dark matter density field, to address key cosmological questions. Classifying these galaxies based on morphology is thus an important step toward achieving the science goals of next generation radio surveys. Radio galaxies have been traditionally been classified as Fanaroff-Riley (FR) I and II, although some exhibit more complex 'bent' morphologies arising from environmental factors or intrinsic properties. In this work we present the FIRST Classifier, an on-line system for automated classification of Compact and Extended radio sources. We developed the FIRST Classifier based on a trained Deep Convolutional Neural Network Model to automate the morphological classification of compact and extended radio sources observed in the FIRST radio survey. Our model achieved an overall accuracy of 97% and a recall of 98%, 100%, 98% and 93% for Compact, BENT, FRI and FRII galaxies respectively. The current version of the FIRST classifier is able to predict the morphological class for a single source or for a list of sources as Compact or Extended (FRI, FRII and BENT).

[1]  Peter Sollich,et al.  Replica theory for learning curves for Gaussian processes on random graphs , 2012, 1202.5918.

[2]  D. Proctor MORPHOLOGICAL ANNOTATIONS FOR GROUPS IN THE FIRST DATABASE , 2011, 1104.3896.

[3]  Stephen V. Stehman,et al.  Selecting and interpreting measures of thematic classification accuracy , 1997 .

[4]  S. Randall,et al.  THE MERGER ENVIRONMENT OF THE WIDE ANGLE TAIL HOSTING CLUSTER A562 , 2010, 1010.4297.

[5]  T. Heckman,et al.  On the fundamental dichotomy in the local radio-AGN population , 2012, 1201.2397.

[6]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[7]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[8]  Robert H. Becker,et al.  THE LAST OF FIRST: THE FINAL CATALOG AND SOURCE IDENTIFICATIONS , 2015, 1501.01555.

[9]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[10]  H. Andernach,et al.  Radio Galaxy Zoo : host galaxies and radio morphologies derived from visual inspection , 2015, 1507.07272.

[11]  A. Aniyan,et al.  Classifying Radio Galaxies with the Convolutional Neural Network , 2017, 1705.03413.

[12]  John Scott Bridle,et al.  Probabilistic Interpretation of Feedforward Classification Network Outputs, with Relationships to Statistical Pattern Recognition , 1989, NATO Neurocomputing.

[13]  Jeff Wagg,et al.  Advancing Astrophysics with the Square Kilometre Array , 2015 .

[14]  P. G. Jonker,et al.  American Astronomical Society Meeting Abstracts , 2011 .

[15]  O. Fuentes,et al.  Machine learning and image analysis for morphological galaxy classification , 2004 .

[16]  R. Becker,et al.  Discovery of a High-Redshift (z = 0.96) Cluster of Galaxies Using a FIRST Survey Wide-Angle-Tailed Radio Source , 2002, astro-ph/0212407.

[17]  M. Merrifield,et al.  The origin of wide-angle tailed radio galaxies , 1999, astro-ph/9909511.

[18]  F. Massaro,et al.  FRIICAT: A FIRST catalog of FR II radio galaxies , 2017, 1703.03427.

[19]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[20]  FIRST Bent-Double Radio Sources: Tracers of High-Redshift Clusters* , 1999, astro-ph/9910099.

[21]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[22]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[23]  F. Owen,et al.  CCD surface photometry of radio galaxies – I. FR class I and II sources , 1989 .

[24]  C. Sarazin,et al.  Chandra Observation of the Cluster Environment of a WAT Radio Source in Abell 1446 , 2006, 0706.2519.

[25]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[26]  O. Lahav,et al.  Morphological Classification of galaxies by Artificial Neural Networks , 1992 .

[27]  O. Lahav,et al.  Galaxies, Human Eyes, and Artificial Neural Networks , 1994, Science.

[28]  F. Massaro,et al.  FRICAT: A FIRST catalog of FRI radio galaxies , 2016, 1610.09376.

[29]  U. Oklahoma,et al.  The Environments of a Complete Moderate-Redshift Sample of FIRST Bent-Double Radio Sources , 2001, astro-ph/0102499.

[30]  J. Riley,et al.  The Morphology of Extragalactic Radio Sources of High and Low Luminosity , 1974 .

[31]  R. P. Norris,et al.  Radio Galaxy Zoo: compact and extended radio source classification with deep learning , 2018, 1801.04861.

[32]  M. Jarvis,et al.  Morphological classification of radio sources for galaxy evolution and cosmology with SKA-MID , 2014, 1412.5990.

[33]  Huaizu Jiang,et al.  Face Detection with the Faster R-CNN , 2016, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017).

[34]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[35]  A. Shulevski,et al.  The ASKAP/EMU Source Finding Data Challenge , 2015, Publications of the Astronomical Society of Australia.

[36]  A. Hopkins,et al.  Science with the Australian Square Kilometre Array Pathfinder , 2007, Publications of the Astronomical Society of Australia.

[37]  A. Hopkins,et al.  Science with ASKAP , 2008, 0810.5187.

[38]  P. Best,et al.  The Combined NVSS–FIRST Galaxies (CoNFIG) sample – II. Comparison of space densities in the Fanaroff–Riley dichotomy , 2010 .

[39]  Andrew J. Connolly,et al.  Statistics, Data Mining, and Machine Learning in Astronomy , 2014 .

[40]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[41]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[42]  Matt J. Jarvis,et al.  MIGHTEE: The MeerKAT International GHz Tiered Extragalactic Exploration , 2017 .