An Optimized Low-Dissipation Monotonicity-Preserving Scheme for Numerical Simulations of High-Speed Turbulent Flows

[1]  Zhaorui Li,et al.  A high‐order finite difference method for numerical simulations of supersonic turbulent flows , 2012 .

[2]  Sergio Pirozzoli,et al.  Numerical Methods for High-Speed Flows , 2011 .

[3]  P. Lu,et al.  A new shock/discontinuity detector , 2010, Int. J. Comput. Math..

[4]  Parviz Moin,et al.  Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves , 2010, J. Comput. Phys..

[5]  Zhaorui Li,et al.  Large-Eddy Simulation of Turbulent Boundary Layer Interaction with an Oblique Shock Wave , 2010 .

[6]  Anastasios S. Lyrintzis,et al.  High‐order shock capturing schemes for turbulence calculations , 2009 .

[7]  Sanjiva K. Lele,et al.  Shock-turbulence interaction: What we know and what we can learn from peta-scale simulations , 2009 .

[8]  Minwei Wu,et al.  Direct Numerical Simulation of a Reflected-Shock-Wave/ Turbulent-Boundary-Layer Interaction , 2009 .

[9]  Gecheng Zha,et al.  Improvement of weighted essentially non-oscillatory schemes near discontinuities , 2009 .

[10]  Ellen M. Taylor,et al.  Direct Numerical Simulation of Shock-wave/Isotropic Turbulence Interaction , 2009 .

[11]  Neil D. Sandham,et al.  Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble , 2009 .

[12]  Sanjiva K. Lele,et al.  Direct numerical simulations of canonical shock/turbulence interaction , 2008, Proceeding of Sixth International Symposium on Turbulence and Shear Flow Phenomena.

[13]  Björn Sjögreen,et al.  Adaptive filtering and limiting in compact high order methods for multiscale gas dynamics and MHD systems , 2008 .

[14]  X. Gloerfelt,et al.  Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low Mach number , 2008 .

[15]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[16]  Guy Capdeville,et al.  A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes , 2008, J. Comput. Phys..

[17]  Xiang-Jiang Yuan,et al.  A characteristic-based shock-capturing scheme for hyperbolic problems , 2007, J. Comput. Phys..

[18]  Minwei Wu,et al.  Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp , 2007 .

[19]  M. Pino Martín,et al.  Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence , 2007, J. Comput. Phys..

[20]  M. Pino Martin,et al.  Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments , 2007, Journal of Fluid Mechanics.

[21]  V. Gregory Weirs,et al.  A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence , 2006, J. Comput. Phys..

[22]  Miguel R. Visbal,et al.  Shock Capturing Using Compact-Differencing-Based Methods , 2005 .

[23]  Björn Sjögreen,et al.  Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for High Order Methods , 2004, J. Sci. Comput..

[24]  D. Pullin,et al.  Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks , 2004 .

[25]  Christian Tenaud,et al.  High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations , 2004 .

[26]  Sergio Pirozzoli,et al.  Development of optimized weighted‐ENO schemes for multiscale compressible flows , 2003 .

[27]  Yong-Tao Zhang,et al.  Resolution of high order WENO schemes for complicated flow structures , 2003 .

[28]  Jianxian Qiu,et al.  On the construction, comparison, and local characteristic decomposition for high-Order central WENO schemes , 2002 .

[29]  Jean-Bernard Cazalbou,et al.  Direct Numerical Simulation of the Interaction between a Shock Wave and Various Types of Isotropic Turbulence , 2002 .

[30]  P. Sagaut,et al.  Large-Eddy Simulation of Shock/Homogeneous Turbulence Interaction , 2002 .

[31]  Zhi J. Wang,et al.  Optimized weighted essentially nonoscillatory schemes for linear waves with discontinuity: 381 , 2001 .

[32]  William J. Rider,et al.  Simple modifications of monotonicity-preserving limiters , 2001 .

[33]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[34]  P. Sagaut,et al.  On the Use of Shock-Capturing Schemes for Large-Eddy Simulation , 1999 .

[35]  Debra Spinks,et al.  Annual Research Briefs , 1997 .

[36]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[37]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[38]  Parviz Moin,et al.  Interaction of isotropic turbulence with shock waves: effect of shock strength , 1997, Journal of Fluid Mechanics.

[39]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[40]  Rainer Friedrich,et al.  Direct Numerical Simulation of a Mach 2 shock interacting with isotropic turbulence , 1995 .

[41]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[42]  David P. Lockard,et al.  High-accuracy algorithms for computational aeroacoustics , 1995 .

[43]  J. Bonnet,et al.  Experimental study of a normal shock/homogeneous turbulence interaction , 1995 .

[44]  David P. Lockard,et al.  High accuracy algorithms for computational aeroacoustics , 1994 .

[45]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[46]  Parviz Moin,et al.  Direct numerical simulation of isotropic turbulence interacting with a weak shock wave , 1993, Journal of Fluid Mechanics.

[47]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[48]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[49]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[50]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[51]  Clinton P. T. Groth,et al.  Assessment of Riemann solvers for unsteady one-dimensional inviscid flows for perfect gases , 1988 .

[52]  R. Rogallo Numerical experiments in homogeneous turbulence , 1981 .

[53]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[54]  S. Priebe,et al.  Direct Numerical Simulation of a eflected-Shock- Wave/Turbulent-Boundary-Layer Interaction , 2009 .

[55]  Miguel R. Visbal,et al.  Application of Large-Eddy Simulation to Supersonic Compression Ramps , 2002 .

[56]  D. Gaitonde,et al.  Pade-Type Higher-Order Boundary Filters for the Navier-Stokes Equations , 2000 .

[57]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[58]  P. Moin,et al.  Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows , 1997 .

[59]  V. Gregory Weirs,et al.  Optimization of weighted ENO schemes for DNS of compressible turbulence , 1997 .

[60]  Sangsan Lee,et al.  Large eddy simulation of shock turbulence interaction , 1993 .

[61]  P. Moin,et al.  Effect of numerical dissipation on the predicted spectra for compressible turbulence , 2022 .

[62]  K R I S H N A N M A H E S H, S A N J I V,et al.  The influence of entropy fluctuations on the interaction of turbulence with a shock wave , 2022 .