Materials’ Methods: NMR in Battery Research

Improving electrochemical energy storage is one of the major issues of our time. The search for new battery materials together with the drive to improve performance and lower cost of existing and new batteries is not without its challenges. Success in these matters is undoubtedly based on first understanding the underlying chemistries of the materials and the relations between the components involved. A combined application of experimental and theoretical techniques has proven to be a powerful strategy to gain insights into many of the questions that arise from the “how do batteries work and why do they fail” challenge. In this Review, we highlight the application of solid-state nuclear magnetic resonance (NMR) spectroscopy in battery research: a technique that can be extremely powerful in characterizing local structures in battery materials, even in highly disordered systems. An introduction on electrochemical energy storage illustrates the research aims and prospective approaches to reach these. We part...

[1]  J. Keller,et al.  μ+ Knight shift in Be , 1979 .

[2]  M. Rosa Palacín,et al.  New British Standards , 1979 .

[3]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[4]  Bruno Scrosati,et al.  Fast Ion Transport in Solids , 1993 .

[5]  D. Berndt Maintenance-Free Batteries , 1993 .

[6]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[7]  Jean-Marie Tarascon,et al.  Performance of Bellcore's plastic rechargeable Li-ion batteries , 1996 .

[8]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[9]  K. Kramarz,et al.  Toroids in NMR Spectroscopy , 1997 .

[10]  Malcolm H. Levitt,et al.  The Signs of Frequencies and Phases in NMR , 1997 .

[11]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[12]  Brian C. Sales,et al.  Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes. , 1997 .

[13]  T. Abe,et al.  STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution , 1999 .

[14]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[15]  Michael M. Thackeray,et al.  Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .

[16]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[17]  Deborah J. Jones,et al.  EXAFS: A Structural Probe for Cathode Materials in Lithium Ion Batteries , 2000 .

[18]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[19]  Christopher S. Johnson,et al.  7Li NMR study of intercalated lithium in curved carbon lattices , 2000 .

[20]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[21]  Doron Aurbach,et al.  A short review on the comparison between Li battery systems and rechargeable magnesium battery technology , 2001 .

[22]  P. Granger,et al.  NMR nomenclature. Nuclear spin properties and conventions for chemical shifts(IUPAC Recommendations 2001) , 2001 .

[23]  Christopher S. Johnson,et al.  In situ nuclear magnetic resonance investigations of lithium ions in carbon electrode materials using a novel detector , 2001 .

[24]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[25]  J. Kerr,et al.  Chemical reactivity of PF{sub 5} and LiPF{sub 6} in ethylene carbonate/dimethyl carbonate solutions , 2001 .

[26]  P. Granger,et al.  NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts. IUPAC Recommendations 2001. , 2002, Solid state nuclear magnetic resonance.

[27]  P. Granger,et al.  NMR nomenclature: nuclear spin properties and conventions for chemical shifts. IUPAC Recommendations 2001. International Union of Pure and Applied Chemistry. Physical Chemistry Division. Commission on Molecular Structure and Spectroscopy , 2002 .

[28]  Gavin Vaughan,et al.  In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials , 2002 .

[29]  Yet-Ming Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[30]  Robin K. Harris,et al.  NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts—IUPAC Recommendations , 2002 .

[31]  T. Gustafsson,et al.  Neutron-scattering studies on carbon anode materials used in lithium-ion batteries , 2002 .

[32]  Alexej Jerschow,et al.  Solid-state NMR spectroscopic methods in chemistry. , 2002, Angewandte Chemie.

[33]  M. Armand,et al.  Pregnancy: A cloned horse born to its dam twin , 2003, Nature.

[34]  François Béguin,et al.  The first in situ 7Li nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries , 2003 .

[35]  François Béguin,et al.  In situ 7Li-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons , 2003 .

[36]  John T. Vaughey,et al.  ZrO2- and Li2ZrO3-stabilized spinel and layered electrodes for lithium batteries , 2003 .

[37]  G. Ceder,et al.  Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations , 2003 .

[38]  C. Grey,et al.  NMR studies of cathode materials for lithium-ion rechargeable batteries. , 2004, Chemical reviews.

[39]  Y. Aihara,et al.  Quasi-elastic neutron scattering investigation of dynamics in polymer electrolytes , 2004 .

[40]  P. Bruce,et al.  TiO(2)-B nanowires. , 2004, Angewandte Chemie.

[41]  J. Tarascon,et al.  Contribution of X-ray Photoelectron Spectroscopy to the Study of the Electrochemical Reactivity of CoO toward Lithium , 2004 .

[42]  A. R. Armstrong,et al.  TiO2‐B Nanowires , 2004 .

[43]  J. Rouzaud,et al.  The first in situ 7Li NMR study of the reversible lithium insertion mechanism in disorganised carbons , 2004 .

[44]  Jean-Marie Tarascon,et al.  The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 , 2005 .

[45]  F. Chevallier,et al.  In situ 7Li NMR during lithium electrochemical insertion into graphite and a carbon/carbon composite , 2006 .

[46]  J. Tarascon,et al.  The Existence of a Temperature-Driven Solid Solution for 0 < x < 1 in LixFePO4 , 2006 .

[47]  F. Chevallier,et al.  In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle , 2007 .

[48]  Michael Holzapfel,et al.  Raman study of lithium coordination in EMI‐TFSI additive systems as lithium‐ion battery ionic liquid electrolytes , 2007 .

[49]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[50]  M. Armand,et al.  Building better batteries , 2008, Nature.

[51]  P. Moreau,et al.  Electron energy-loss spectroscopy in the low-loss region as a characterization tool of electrode materials , 2008 .

[52]  P. Granger,et al.  Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008) , 2008 .

[53]  S. Ashbrook,et al.  Quadrupolar Coupling: An Introduction and Crystallographic Aspects , 2009 .

[54]  ZhengHua Deng,et al.  A high rate, high capacity and long life (LiMn2O4 + AC)/Li4Ti5O12 hybrid battery–supercapacitor , 2009 .

[55]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[56]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[57]  D. Aurbach,et al.  A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries , 2009 .

[58]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[59]  C. Grey,et al.  Linking local environments and hyperfine shifts: a combined experimental and theoretical (31)P and (7)Li solid-state NMR study of paramagnetic Fe(III) phosphates. , 2010, Journal of the American Chemical Society.

[60]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[61]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[62]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[63]  P. Moreau,et al.  Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries. , 2010, Physical chemistry chemical physics : PCCP.

[64]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[65]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[66]  A. J. Vega Quadrupolar Nuclei in Solids , 2010 .

[67]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[68]  Candela Vidal-Abarca,et al.  The Origin of Capacity Fading in NiFe2O4 Conversion Electrodes for Lithium Ion Batteries Unfolded by 57Fe Mössbauer Spectroscopy , 2010 .

[69]  W. Craig Carter,et al.  Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines , 2010 .

[70]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[71]  F. Haarmann Quadrupolar NMR of Intermetallic Compounds , 2011 .

[72]  Laure Monconduit,et al.  New cell design for in-situ NMR studies of lithium-ion batteries , 2011 .

[73]  R. Schurko Acquisition of Wideline Solid‐State NMR Spectra of Quadrupolar Nuclei , 2011 .

[74]  Yunhui Huang,et al.  New Anode Framework for Rechargeable Lithium Batteries , 2011 .

[75]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[76]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[77]  P. Man Quadrupolar Interactions , 2011 .

[78]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[79]  Jason Graetz,et al.  Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. , 2011, Journal of the American Chemical Society.

[80]  R. G. Downing,et al.  In Situ Neutron Techniques for Studying Lithium Ion Batteries | NIST , 2012 .

[81]  C. Grey,et al.  In situ NMR of lithium ion batteries: bulk susceptibility effects and practical considerations. , 2012, Solid state nuclear magnetic resonance.

[82]  Madhusudan,et al.  Inelastic Neutron Scattering on Polymer Electrolytes for Lithium-Ion Batteries , 2012 .

[83]  P. Bruce,et al.  Nanoparticulate TiO2(B): an anode for lithium-ion batteries. , 2012, Angewandte Chemie.

[84]  Allen G. Oliver,et al.  Electrolyte roadblocks to a magnesium rechargeable battery , 2012 .

[85]  M Stanley Whittingham,et al.  Spin-transfer pathways in paramagnetic lithium transition-metal phosphates from combined broadband isotropic solid-state MAS NMR spectroscopy and DFT calculations. , 2012, Journal of the American Chemical Society.

[86]  Anton Van der Ven,et al.  Thermodynamics of Lithium in TiO2(B) from First Principles , 2012 .

[87]  藤井宏纪,et al.  Lithium-ion rechargeable battery battery capacity detection means , 2012 .

[88]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[89]  P. Bruce,et al.  Direct detection of discharge products in lithium-oxygen batteries by solid-state NMR spectroscopy. , 2012, Angewandte Chemie.

[90]  C. Soles,et al.  Inelastic Neutron Scattering on Polymer Electrolytes for Lithium-Ion Batteries | NIST , 2012 .

[91]  Thilo Pirling,et al.  “In-operando” neutron scattering studies on Li-ion batteries , 2012 .

[92]  P. Heitjans,et al.  Li Ion Dynamics in a LiAlO2 Single Crystal Studied by 7Li NMR Spectroscopy and Conductivity Measurements , 2012 .

[93]  Alexej Jerschow,et al.  7Li MRI of Li batteries reveals location of microstructural lithium. , 2012, Nature materials.

[94]  T. Bein,et al.  In situ SAXS study on a new mechanism for mesostructure formation of ordered mesoporous carbons: thermally induced self-assembly. , 2012, Journal of the American Chemical Society.

[95]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[96]  D. Apperley,et al.  Solid-state NMR : basic principles & practice , 2012 .

[97]  Xiao Hua,et al.  Origin of additional capacities in metal oxide lithium-ion battery electrodes. , 2013, Nature materials.

[98]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[99]  Fiona C. Strobridge,et al.  Density Functional Theory-Based Bond Pathway Decompositions of Hyperfine Shifts: Equipping Solid-State NMR to Characterize Atomic Environments in Paramagnetic Materials , 2013 .

[100]  C. Grey,et al.  Paramagnetic electrodes and bulk magnetic susceptibility effects in the in situ NMR studies of batteries: application to Li1.08Mn1.92O4 spinels. , 2013, Journal of magnetic resonance.

[101]  C. Grey,et al.  In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. , 2013, Accounts of chemical research.

[102]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[103]  M. Jansen,et al.  Solid‐state NMR Spectroscopy of Quadrupolar Nuclei in Inorganic Chemistry , 2013 .

[104]  R. Schurko Ultra-wideline solid-state NMR spectroscopy. , 2013, Accounts of chemical research.

[105]  Daniel Sharon,et al.  On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM. , 2013, The journal of physical chemistry letters.

[106]  C. Grey,et al.  Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[107]  J. Gerbec,et al.  Sulfur-functionalized mesoporous carbons as sulfur hosts in Li-S batteries: increasing the affinity of polysulfide intermediates to enhance performance. , 2014, ACS applied materials & interfaces.

[108]  Craig A. J. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society Reviews.

[109]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[110]  Y. Kido,et al.  Atomistic structure of a spinel Li4Ti5O12(111) surface elucidated by scanning tunneling microscopy and medium energy ion scattering spectrometry , 2014 .

[111]  Matthew T. Dunstan,et al.  Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na 3 V 2 ( PO 4 ) 2 F 3 , 2014 .

[112]  P. Heitjans,et al.  Insight into the Li Ion Dynamics in Li12Si7: Combining Field Gradient Nuclear Magnetic Resonance, One- and Two-Dimensional Magic-Angle Spinning Nuclear Magnetic Resonance, and Nuclear Magnetic Resonance Relaxometry , 2014 .

[113]  Dean J. Miller,et al.  Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach , 2014, Nature Communications.

[114]  M. Gutmann,et al.  Crystal growth and neutron diffraction studies of LixCoO2 bulk single crystals , 2014 .

[115]  John B. Goodenough,et al.  Electrochemical energy storage in a sustainable modern society , 2014 .

[116]  Jean-Marie Tarascon,et al.  Sulfate-Based Polyanionic Compounds for Li-Ion Batteries: Synthesis, Crystal Chemistry, and Electrochemistry Aspects , 2014 .

[117]  Matthew T. Dunstan,et al.  Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)2F3 , 2014 .

[118]  Karena W. Chapman,et al.  Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes , 2014, Science.

[119]  T. Ishihara,et al.  New perspectives in the surface analysis of energy materials by combined time-of-flight secondary ion mass spectrometry (ToF-SIMS) and high sensitivity low-energy ion scattering (HS-LEIS) , 2014 .

[120]  Jonathan P. Wright,et al.  Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4. , 2014, Nano letters.

[121]  A. J. Morris,et al.  Ab Initio Structure Search and in Situ 7Li NMR Studies of Discharge Products in the Li–S Battery System , 2014, Journal of the American Chemical Society.

[122]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[123]  H. Gasteiger,et al.  In Operando Small-Angle Neutron Scattering (SANS) on Li-Ion Batteries , 2015 .

[124]  Matthew T. Dunstan,et al.  Ion Dynamics in Li2CO3 Studied by Solid-State NMR and First-Principles Calculations , 2015 .

[125]  James B. Robinson,et al.  In-operando high-speed tomography of lithium-ion batteries during thermal runaway , 2015, Nature Communications.

[126]  H. Nozaki,et al.  Li-ion diffusion in Li 4 Ti 5 O 12 and LiTi 2 O 4 battery materials detected by muon spin spectroscopy , 2015 .

[127]  C. Grey,et al.  Probing Dynamic Processes in Lithium-Ion Batteries by In Situ NMR Spectroscopy: Application to Li1.08Mn1.92O4 Electrodes. , 2015, Angewandte Chemie.

[128]  Ste,et al.  Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li 4 SiO 4 − Li 3 PO 4 Solid Electrolytes , 2015 .

[129]  A. Gewirth,et al.  In Situ EQCM Study Examining Irreversible Changes the Sulfur-Carbon Cathode in Lithium-Sulfur Batteries. , 2015, ACS applied materials & interfaces.

[130]  Tao Liu,et al.  Cycling Li-O2 batteries via LiOH formation and decomposition , 2015, Science.

[131]  Mark Wild,et al.  Lithium sulfur batteries, a mechanistic review , 2015 .

[132]  E. Salager,et al.  Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries , 2015, Nature Communications.

[133]  J. Dahn,et al.  Differential Thermal Analysis of Li-Ion Cells as an Effective Probe of Liquid Electrolyte Evolution during Aging , 2015 .

[134]  Kazuma Gotoh,et al.  In Situ Solid State 7Li NMR Observations of Lithium Metal Deposition during Overcharge in Lithium Ion Batteries , 2015 .

[135]  Y. Meng,et al.  Frontiers of in situ electron microscopy , 2015 .

[136]  Ying Shirley Meng,et al.  The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes , 2015 .

[137]  Yue Deng,et al.  Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes. , 2015, Journal of the American Chemical Society.

[138]  C. Grey,et al.  Investigating Li Microstructure Formation on Li Anodes for Lithium Batteries by in Situ 6Li/7Li NMR and SEM , 2015 .

[139]  J. Velasco‐Vélez,et al.  Probing Operating Electrochemical Interfaces by Photons and Neutrons , 2015 .

[140]  Jens Noack,et al.  The Chemistry of Redox‐Flow Batteries , 2015 .

[141]  G. Pintacuda,et al.  Broadband solid-state MAS NMR of paramagnetic systems. , 2015, Progress in nuclear magnetic resonance spectroscopy.

[142]  Helena Berg,et al.  Batteries for Electric Vehicles: Materials and Electrochemistry , 2015 .

[143]  Jaephil Cho,et al.  Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide. , 2015, Journal of the American Chemical Society.

[144]  Den Dolech In situ methods for Li-ion battery research: A review of recent developments , 2015 .

[145]  S. Ashbrook,et al.  Combining solid-state NMR spectroscopy with first-principles calculations - a guide to NMR crystallography. , 2016, Chemical communications.

[146]  C. Grey,et al.  Challenges and new opportunities of in situ NMR characterization of electrochemical processes , 2016 .

[147]  K. Edström,et al.  Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. , 2016, Nature chemistry.

[148]  J. M. Paz-Garcia,et al.  4D analysis of the microstructural evolution of Si-based electrodes during lithiation: Time-lapse X-ray imaging and digital volume correlation , 2016 .

[149]  F. Fauth,et al.  Strong Impact of the Oxygen Content in Na3V2(PO4)2F3–yOy (0 ≤ y ≤ 0.5) on Its Structural and Electrochemical Properties , 2016 .

[150]  C. Grey,et al.  Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products , 2016 .

[151]  C. Grey,et al.  Research data supporting “Mechanistic insights into sodium storage in hard carbon anodes using local structure probes” , 2016 .

[152]  K. Biswas,et al.  Raman and FTIR spectroscopy study of LiFeTiO4 and Li2FeTiO4 , 2016, Ionics.

[153]  T. Akita,et al.  Practical analysis of Li distribution by EELS , 2016 .

[154]  Chris J. Pickard,et al.  Ab Initio Study of Phosphorus Anodes for Lithium- and Sodium-Ion Batteries , 2016 .

[155]  Oliver Pecher,et al.  Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. , 2016, Chemical communications.

[156]  F. Fauth,et al.  Strong Impact of the Oxygen Content in Na 3 V 2 ( PO 4 ) 2 F 3y O y ( 0 y 0 . 5 ) on its Structural and Electrochemical Properties , 2016 .

[157]  Fiona C. Strobridge,et al.  Research data supporting "Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFexCo1-xPO4" , 2016 .

[158]  Gerbrand Ceder,et al.  Computational understanding of Li-ion batteries , 2016 .

[159]  C. Grey,et al.  Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries. , 2016, Journal of magnetic resonance.

[160]  N. Dudney,et al.  In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries. , 2016, Nano letters.

[161]  E. Cussen,et al.  Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy† , 2016 .

[162]  S. Ong,et al.  Thermodynamics, Kinetics and Structural Evolution of ε-LiVOPO4 over Multiple Lithium Intercalation , 2016 .

[163]  A. J. Morris,et al.  Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy , 2016, Journal of the American Chemical Society.

[164]  Alexander C. Forse,et al.  High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases. , 2016, Journal of the American Chemical Society.

[165]  Surface and Interface Issues in Spinel LiNi0.5Mn1.5O4: Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries , 2016 .

[166]  L. Monconduit,et al.  In Situ NMR Insights Into the Electrochemical Reaction of Cu3P Electrodes with Lithium , 2016 .

[167]  C. Grey,et al.  Insights into Electrochemical Sodium Metal Deposition as Probed with in Situ (23)Na NMR. , 2016, Journal of the American Chemical Society.

[168]  Alexander C. Forse,et al.  Research data supporting "High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases" , 2016 .

[169]  Andrew J. Senesi,et al.  Small Angle X-ray Scattering for Nanoparticle Research. , 2016, Chemical reviews.

[170]  M. R. Palacín,et al.  Towards a calcium-based rechargeable battery. , 2016, Nature materials.

[171]  M. R. Palacín,et al.  Why do batteries fail? , 2016, Science.