Helly numbers of subsets of ℝᵈ and sampling techniques in optimization

We present Helly-type theorems where the convex sets are required to intersect a subset S of R d . This is a continuation of prior work for S = R d , Z d , and Z d k R k (motivated by mixed-integer optimization). We are particularly interested in the case when S has some algebraic structure, in particular when S is a subgroup or the dierence between a lattice and some sublattices. We give sharp bounds on the Helly numbers for S in several cases. By abstracting the ingredients of a general method we obtain colorful versions of many monochro- matic Helly-type results, including several of our results. In the second part of the article we discuss a notion of S-optimization that generalizes continuous, integral, and mixed-integer optimization and show that two well-known random- ized sampling algorithms, Clarkson's and Calaore-Campi's algorithms, can be extended to work with more sophisticated variables over S as long as the S-Helly number h(S) is nite.

[1]  Jesús A. De Loera,et al.  A quantitative Doignon-Bell-Scarf theorem , 2014, Comb..

[2]  Andreas Holmsen,et al.  HELLY-TYPE THEOREMS AND GEOMETRIC TRANSVERSALS , 2016 .

[3]  Gennadiy Averkov,et al.  On Maximal S-Free Sets and the Helly Number for the Family of S-Convex Sets , 2011, SIAM J. Discret. Math..

[4]  Robert Weismantel,et al.  Transversal numbers over subsets of linear spaces , 2010, 1002.0948.

[5]  Friedrich Eisenbrand,et al.  Parametric Integer Programming in Fixed Dimension , 2008, Math. Oper. Res..

[6]  L. Montejano,et al.  Flat transversals to flats and convex sets of a fixed dimension , 2007 .

[7]  Jirí Matousek,et al.  Violator spaces: Structure and algorithms , 2006, Discret. Appl. Math..

[8]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[9]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[10]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[11]  Jiří Matoušek,et al.  A fractional Helly theorem for convex lattice sets , 2003 .

[12]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[13]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[14]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[15]  Nina Amenta,et al.  Helly-type theorems and Generalized Linear Programming , 1994, Discret. Comput. Geom..

[16]  A. Odlyzko Iterated absolute values of differences of consecutive primes , 1993 .

[17]  Nina Amenta,et al.  Helly theorems and generalized linear programming , 1993, SCG '93.

[18]  Van de M. L. J. Vel Theory of convex structures , 1993 .

[19]  J. Eckhoff Helly, Radon, and Carathéodory Type Theorems , 1993 .

[20]  Micha Sharir,et al.  A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.

[21]  Imre Bárány,et al.  A generalization of carathéodory's theorem , 1982, Discret. Math..

[22]  Gerard Sierksma,et al.  A Tverberg-type generalization of the Helly number of a convexity space , 1981 .

[23]  Robert E. Jamison-Waldner PARTITION NUMBERS FOR TREES AND ORDERED SETS , 1981 .

[24]  M. Katchalski,et al.  A Problem of Geometry in R n , 1979 .

[25]  A. J. Hoffman BINDING CONSTRAINTS AND HELLY NUMBERS , 1979 .

[26]  M. Katchalski,et al.  A problem of geometry in ⁿ , 1979 .

[27]  H. Scarf An observation on the structure of production sets with indivisibilities. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[28]  David E. Bell A Theorem Concerning the Integer Lattice , 1977 .

[29]  Jean-Paul Doignon,et al.  Convexity in cristallographical lattices , 1973 .

[30]  D. C. Kay,et al.  Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers , 1971 .

[31]  Taqdir Husain,et al.  Introduction to Topological Groups , 1966 .

[32]  V. Klee,et al.  Helly's theorem and its relatives , 1963 .

[33]  THE DIMENSION OF INTERSECTIONS OF CONVEX SETS , 1962 .

[34]  E. Helly Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .

[35]  E. Steinitz Bedingt konvergente Reihen und konvexe Systeme. , 1913 .