An algebraic approach to rule based expert systems

This article presents a survey of the authors' research on knowledge extraction and verification of Rule Based Expert Systems (RBES) using algebraic inference engines and based on Gröbner bases theory. A shell, including a graphic user interface and inference engines for different logics (both classic and modal multi-valued) as well as in different computer algebra systems, is also presented here. The shell distinguishes three levels: at the lower level, we provIDe the computer algebra system code of the algebraic inference engines; at the intermediate level, the RBES developer has to detail the rules and integrity constraints of a certain RBES; and, finally, at the upper level, the final user deals with a simple GUI, where he can perform knowledge extraction or verify the RBES, after choosing the logic and inputing a consistent set of facts. We believe that this shell can be really useful for teaching and quick RBES design.ResumenEste artículo presenta una panorámica de la línea de investigación de los autores en extracci ón de conocimiento y verificación de Sistemas Expertos Basados en Reglas (RBES) usando motores de inferencia algebraicos y basada en la teoría de bases de Gröbner. Se presenta también una shell, que incluye una interfaz gráfica de usuario y motores de inferencia para distintas lógicas (tanto clásicas como modales multivaluadas) y en distintos sistemas de cómputo algebraico. La shell distingue tres niveles: en el más bajo proporcionamos el código del motor de inferencia para el sistema de cómputo algebraico elegIDo; en el intermedio el desarrollador del RBES tiene que detallar las reglas y las restricciones de integrIDad de un cierto RBES; y, finalmente, en el nivel superior, el usuario final trata con una sencilla interfaz gráfica de usuario, en la que puede llevar a cabo extracción de conocimiento o verificar el RBES, después de elegir la lógica y de introducir un conjunto consistente de hechos. Creemos que esta shell puede ser realmente útil para la enseñanza y para el rápIDo diseño de RBES.

[1]  Luis de Ledesma,et al.  An Interpretation of the Propositional Boolean Algebra as k-algebra. Effective Calculus , 1994, AISMC.

[2]  Luis M. Laita,et al.  The geometry of algebraic systems and their exact solving using Grobner bases , 2004, Computing in Science & Engineering.

[3]  Bruno Buchberger,et al.  Applications of Gröbner Bases in Non-linear Computational Geometry , 1987, Trends in Computer Algebra.

[4]  Martin Kreuzer,et al.  Computational Commutative Algebra 1 , 2000 .

[5]  Joseph L. Mundy,et al.  Wu's Method and its Application to Perspective Viewing , 1988, Artif. Intell..

[6]  Bruno Buchberger,et al.  Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..

[7]  M. Stone The theory of representations for Boolean algebras , 1936 .

[8]  Jieh Hsiang,et al.  Refutational Theorem Proving Using Term-Rewriting Systems , 1985, Artif. Intell..

[9]  Philippe Loustaunau,et al.  Applications of Gröbner bases , 1994 .

[10]  J. C. Wortmann Logics for artificial intelligence: Ellis Horwood Series in Artificial Intelligence, Ellis Horwood, Chichester, 1984, + 121 pages, £16.50 , 1987 .

[11]  Tomás Recio,et al.  Automatic Discovery of Theorems in Elementary Geometry , 2004, Journal of Automated Reasoning.

[12]  W. W. Adams,et al.  An Introduction to Gröbner Bases , 2012 .

[13]  Antonio Hernando,et al.  A Groebner bases-based approach to backward reasoning in rule based expert systems , 2009, Annals of Mathematics and Artificial Intelligence.

[14]  Emilio Briales Morales,et al.  Multi-Valued Logic and Gröbner Bases with Applications to Modal Logic , 1991, J. Symb. Comput..

[15]  Elliott Mendelson Theory and problems of boolean algebra and switching circuits. , 1970 .

[16]  Bruno Buchberger,et al.  Applications of Gro¨bner bases in non-linear computational geometry , 1988 .

[17]  Franz Winkler,et al.  Polynomial Algorithms in Computer Algebra , 1996, Texts and Monographs in Symbolic Computation.

[18]  Victor Maojo,et al.  An Expert System for Managing Medical Appropriateness Criteria Based on Computer Algebra Techniques , 2001 .

[19]  Eugenio Roanes-Lozano,et al.  Some applications of Grobner bases , 2004 .

[20]  Sabine Koppelberg,et al.  Handbook of Boolean Algebras , 1989 .

[21]  Antonio Hernando,et al.  A SHELL FOR RULE-BASED EXPERT SYSTEMS DEVELOPMENT USING GRÖBNER BASES-BASED INFERENCE ENGINES , 2008 .

[22]  Steven Givant,et al.  Logic As Algebra , 1998 .

[23]  Hakim Lounis Knowledge-Based Systems Verification: A Machine Learning-Based Approach , 1993, EUROVAV.

[24]  L. M. Laita,et al.  A polynomial model for multi-valued logics with a touch of algebraic geometry and computer algebra , 1998 .

[25]  L. M. Laita,et al.  Railway interlocking systems and Gröbner bases , 2000 .

[26]  Luis M. Laita,et al.  Geometric Interpretation of Strong Inconsistency in Knowledge Based Systems , 1999, CASC.

[27]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[28]  Luis M. Laita,et al.  A Groebner Bases Based Many-Valued Modal Logic Implementation in Maple , 2008, AISC/MKM/Calculemus.

[29]  Paul Libbrecht,et al.  Cross-Curriculum Search for Intergeo , 2008 .

[30]  Eugenio Roanes Macías,et al.  A terminal area topology-independent GB-based conflict detection system for A-SMGCS. , 2004 .

[31]  Deepak Kapur,et al.  Geometric reasoning , 1989 .

[32]  P. Halmos Lectures on Boolean Algebras , 1963 .

[33]  Raymond Turner Logics in Artificial Intelligence , 2000, Lecture Notes in Computer Science.

[34]  Alkiviadis G. Akritas,et al.  Elements of Computer Algebra with Applications , 1989 .

[35]  E. Roanes-Lozano,et al.  A computer algebra approach to verification and deduction in many-valued knowledge systems , 1999, Soft Comput..

[36]  S. Chou Mechanical Geometry Theorem Proving , 1987 .