Lyapunov type inequalities for the Riemann-Liouville fractional differential equations of higher order

AbstractIn this paper, some new Lyapunov type inequalities will be presented for Riemann-Liouville fractional differential equations of the form (Daαx)(t)+p(t)|x(t)|μ−1x(t)+q(t)|x(t)|γ−1(t)x(t)=f(t),$$\bigl(D^{\alpha}_{a}x\bigr) (t)+p(t)\big| x(t)\big|^{\mu-1}x (t)+q(t)\big| x(t)\big|^{\gamma -1}(t)x(t)=f(t), $$ where α∈(n−1,n]$\alpha\in(n-1, n]$ (n≥3$n\geq3$), p, q, f are real-valued functions and 0

[1]  R. Ferreira On a Lyapunov-type inequality and the zeros of a certain Mittag–Leffler function , 2014 .

[2]  Xianhua Tang,et al.  Lyapunov inequalities and stability for linear Hamiltonian systems , 2012 .

[3]  Xiao Wang,et al.  Oscillation criteria for forced second order differential equations with mixed nonlinearities , 2009, Appl. Math. Lett..

[5]  Zhaowen Zheng,et al.  Characterization of Eigenvalues in Spectral Gap for Singular Differential Operators , 2012 .

[6]  I. J. Cabrera,et al.  Hartman–Wintner‐type inequalities for a class of nonlocal fractional boundary value problems , 2017 .

[7]  Delfim F. M. Torres,et al.  A generalized Lyapunov's inequality for a fractional boundary value problem , 2016, J. Comput. Appl. Math..

[8]  A. M. Li︠a︡punov Problème général de la stabilité du mouvement , 1949 .

[9]  F. Meng,et al.  Generalized Variational Oscillation Principles for Second-Order Differential Equations with Mixed-Nonlinearities , 2012 .

[10]  Saeed Islam,et al.  Global dynamics of SEIRS epidemic model with non-linear generalized incidences and preventive vaccination , 2015 .

[11]  Zhaowen Zheng,et al.  A Singular Sturm-Liouville Problem with Limit Circle Endpoints and Eigenparameter Dependent Boundary Conditions , 2017 .

[12]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[13]  R. Ferreira A Lyapunov-type inequality for a fractional boundary value problem , 2013 .

[14]  Jiangang Qi,et al.  Classification of Sturm–Liouville differential equations with complex coefficients and operator realizations , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Zhaowen Zheng,et al.  Invariance of deficiency indices under perturbation for discrete Hamiltonian systems , 2013 .

[16]  J. Nieto,et al.  Lyapunov-type inequalities for a higher order fractional differential equation with fractional integral boundary conditions , 2017 .

[17]  M. Jleli,et al.  Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions , 2015 .

[18]  Nimisha Pathak Lyapunov-type inequality for fractional boundary value problems with Hilfer derivative , 2018 .

[19]  D. O’Regan,et al.  Lyapunov-type inequalities for a class of fractional differential equations , 2015 .

[20]  Dexiang Ma A generalized Lyapunov inequality for a higher-order fractional boundary value problem , 2016 .

[21]  Ravi P. Agarwal,et al.  Disconjugacy via Lyapunov and Vallée-Poussin type inequalities for forced differential equations , 2015, Appl. Math. Comput..

[22]  Anke Schmid,et al.  Probleme General De La Stabilite Du Mouvement , 2016 .

[23]  M. Jleli,et al.  A Lyapunov-Type Inequality for a Fractional Differential Equation under a Robin Boundary Condition , 2015 .

[24]  Shaozhu Chen,et al.  Eigenvalues below the lower bound of minimal operators of singular Hamiltonian expressions , 2008, Comput. Math. Appl..

[25]  C. Bai,et al.  Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions , 2015 .

[26]  Yan Huang,et al.  Interval oscillation criteria for a forced second-order nonlinear differential equations with damping , 2011, Appl. Math. Comput..

[27]  Aurel Wintner,et al.  ON THE NON-EXISTENCE OF CONJUGATE POINTS.* , 1951 .

[28]  Wei Jiang,et al.  Existence and uniqueness of the solution of fractional damped dynamical systems , 2017, Advances in Difference Equations.

[29]  Ravi P. Agarwal,et al.  Lyapunov type inequalities for mixed nonlinear Riemann-Liouville fractional differential equations with a forcing term , 2017, J. Comput. Appl. Math..