Competitive blocking of salivary gland [18F]DCFPyL uptake via localized, retrograde ductal injection of non-radioactive DCFPyL: a preclinical study

[1]  M. Stockler,et al.  [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial , 2021, The Lancet.

[2]  D. Elashoff,et al.  The Impact of Monosodium Glutamate on 68Ga-PSMA-11 Biodistribution in Men with Prostate Cancer: A Prospective Randomized, Controlled Imaging Study , 2021, The Journal of Nuclear Medicine.

[3]  S. Larson,et al.  A simple strategy to reduce the salivary gland and kidney uptake of PSMA targeting small molecule radiopharmaceuticals , 2020, bioRxiv.

[4]  P. Choyke,et al.  Comparison of Prostate-Specific Membrane Antigen Expression Levels in Human Salivary Glands to Non-Human Primates and Rodents. , 2020, Cancer biotherapy & radiopharmaceuticals.

[5]  F. Bruchertseifer,et al.  Correction to: 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study , 2019, European Journal of Nuclear Medicine and Molecular Imaging.

[6]  R. Baum,et al.  Salivary gland toxicity after PRLT using Lu-177 PSMA in patients with advanced prostate cancer: A single-center systematic investigation , 2019 .

[7]  P. Meyer,et al.  [177Lu]Lu-PSMA-617 Salivary Gland Uptake Characterized by Quantitative In Vitro Autoradiography , 2019, Pharmaceuticals.

[8]  U. Haberkorn,et al.  Initial clinical experience performing sialendoscopy for salivary gland protection in patients undergoing 225Ac-PSMA-617 RLT , 2018, European Journal of Nuclear Medicine and Molecular Imaging.

[9]  W. Cai,et al.  Targeted α-therapy of prostate cancer using radiolabeled PSMA inhibitors: a game changer in nuclear medicine. , 2018, American journal of nuclear medicine and molecular imaging.

[10]  F. Bénard,et al.  Monosodium Glutamate Reduces 68Ga-PSMA-11 Uptake in Salivary Glands and Kidneys in a Preclinical Prostate Cancer Model , 2018, The Journal of Nuclear Medicine.

[11]  R. Baum,et al.  Salivary Gland Toxicity of PSMA Radioligand Therapy: Relevance and Preventive Strategies , 2018, The Journal of Nuclear Medicine.

[12]  Hossein Jadvar,et al.  PSMA Theranostics: Current Status and Future Directions , 2018, Molecular imaging.

[13]  D. Murphy,et al.  [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. , 2018, The Lancet. Oncology.

[14]  U. Haberkorn,et al.  PSMA-Targeted Radionuclide Therapy and Salivary Gland Toxicity: Why Does It Matter? , 2018, The Journal of Nuclear Medicine.

[15]  R. Baum,et al.  Injection of Botulinum Toxin for Preventing Salivary Gland Toxicity after PSMA Radioligand Therapy: an Empirical Proof of a Promising Concept , 2018, Nuclear Medicine and Molecular Imaging.

[16]  T. Teshima,et al.  Overview of Human Salivary Glands: Highlights of Morphology and Developing Processes , 2017, Anatomical record.

[17]  D. Cohen,et al.  Publisher's Note , 2017, Neuroscience & Biobehavioral Reviews.

[18]  P. Choyke,et al.  Fast indirect fluorine-18 labeling of protein/peptide using the useful 6-fluoronicotinic acid-2,3,5,6-tetrafluorophenyl prosthetic group: A method comparable to direct fluorination. , 2017, Journal of labelled compounds & radiopharmaceuticals.

[19]  W. Brenner,et al.  German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients , 2017, Journal of Nuclear Medicine.

[20]  K. Strauch,et al.  Safety and Efficacy of Botulinum Toxin to Preserve Gland Function after Radiotherapy in Patients with Head and Neck Cancer: A Prospective, Randomized, Placebo-Controlled, Double-Blinded Phase I Clinical Trial , 2016, PloS one.

[21]  S. F. Konieczny,et al.  Salivary gland homeostasis is maintained through acinar cell self-duplication. , 2015, Developmental cell.

[22]  M. Trombetta,et al.  Ultrasound-assisted non-viral gene transfer of AQP1 to the irradiated minipig parotid gland restores fluid secretion , 2015, Gene Therapy.

[23]  A. Villa,et al.  Diagnosis and management of xerostomia and hyposalivation , 2014, Therapeutics and clinical risk management.

[24]  C. Hemmelmann,et al.  Radioprotective effect of lidocaine on function and ultrastructure of salivary glands receiving fractionated radiation. , 2012, International journal of radiation oncology, biology, physics.

[25]  M. Pomper,et al.  2-(3-{1-Carboxy-5-[(6-[18F]Fluoro-Pyridine-3-Carbonyl)-Amino]-Pentyl}-Ureido)-Pentanedioic Acid, [18F]DCFPyL, a PSMA-Based PET Imaging Agent for Prostate Cancer , 2011, Clinical Cancer Research.

[26]  A. Vissink,et al.  A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: prevalence, severity and impact on quality of life , 2010, Supportive Care in Cancer.

[27]  O. Grundmann,et al.  Sensitivity of Salivary Glands to Radiation: from Animal Models to Therapies , 2009, Journal of dental research.

[28]  S. Landas,et al.  Expression of Prostate-Specific Membrane Antigen in Normal and Malignant Human Tissues , 2006, World Journal of Surgery.

[29]  W. Tong,et al.  Cloning, expression, genomic localization, and enzymatic activities of the mouse homolog of prostate-specific membrane antigen/NAALADase/folate hydrolase , 2001, Mammalian Genome.

[30]  D. Bostwick,et al.  Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. , 1998, Urology.

[31]  B. Baum,et al.  Immediate inflammatory responses to adenovirus-mediated gene transfer in rat salivary glands. , 1996, Human gene therapy.