Study of Dynamical Processes with Tensor-Based Spatiotemporal Image Processing Techniques

Image sequence processing techniques are used to study exchange, growth, and transport processes and to tackle key questions in environmental physics and biology. These applications require high accuracy for the estimation of the motion field since the most interesting parameters of the dynamical processes studied are contained in first-order derivatives of the motion field or in dynamical changes of the moving objects. Therefore the performance and optimization of low-level motion estimators is discussed. A tensor method tuned with carefully optimized derivative filters yields reliable and dense displacement vector fields (DVF) with an accuracy of up to a few hundredth pixels/frame for real-world images. The accuracy of the tensor method is verified with computer-generated sequences and a calibrated image sequence. With the improvements in accuracy the motion estimation is now rather limited by imperfections in the CCD sensors, especially the spatial nonuniformity in the responsivity. With a simple two-point calibration, these effects can efficiently be suppressed. The application of the techniques to the analysis of plant growth, to ocean surface microturbulence in IR image sequences, and to sediment transport is demonstrated.

[1]  Bernd Jähne,et al.  Performance Characteristics of Low-level Motion Estimators in Spatiotemporal Images , 1998, Theoretical Foundations of Computer Vision.

[2]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[3]  Bernd Jähne,et al.  Performance Characteristics of Low-level Motion Estimators in Spatiotemporal Images , 1997, Theoretical Foundations of Computer Vision.

[4]  Bernd Jähne,et al.  A Tensor Approach for Precise Computation of Dense Displacement Vector Fields , 1997, DAGM-Symposium.

[5]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[6]  H. Knutsson Representing Local Structure Using Tensors , 1989 .

[7]  A. Ravishankar Rao,et al.  Computing oriented texture fields , 1991, CVGIP Graph. Model. Image Process..

[8]  Bernd Jähne,et al.  Spatio-Temporal Image Processing , 1993, Lecture Notes in Computer Science.

[9]  B. J Hne,et al.  Spatio - temporal Image Processing: Theory and Scientific Applications , 1991 .

[10]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[11]  J. Bigun,et al.  Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.

[12]  A. R. Rao,et al.  A Taxonomy for Texture Description and Identification , 1990, Springer Series in Perception Engineering.

[13]  Enrico Tronci 1997 , 1997, Les 25 ans de l’OMC: Une rétrospective en photos.

[14]  Bernd Jähne,et al.  Mehrgitter-Bewegungssegmentierung in Bildfolgen mit Anwendung zur Detektion von Sedimentverlagerungen , 1993 .

[15]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[16]  Hanno Scharr,et al.  Numerische Isotropieoptimierung von FIR-Filtern mittels Querglättung , 1997, DAGM-Symposium.

[17]  Hans-Hellmut Nagel,et al.  Optical Flow Estimation: Advances and Comparisons , 1994, ECCV.

[18]  E. Delp,et al.  Estimating displacement vectors from an image sequence , 1989 .

[19]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[20]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[21]  Bernd Jähne,et al.  AIR-WATER GAS EXCHANGE , 1998 .

[22]  Peter S. Liss,et al.  The sea surface and global change , 1997 .

[23]  Eero P. Simoncelli,et al.  Optimally Rotation-Equivariant Directional Derivative Kernels , 1997, CAIP.

[24]  Bernd Jähne ÜBERSICHTSAUFSATZ: SIMD-Bildverarbeitungsalgorithmen mit dem Multimedia Extension- Instruktionssatz (MMX) von Intel , 1997 .

[25]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .