Parallel and sequential Kaczmarz methods for solving underdetermined nonlinear equations

Abstract We analyze the convergence of iterative process in R n , of the type x k + 1 = Φ ( x k , w k ). Using this theory we prove the local convergence of a sequential Kaczmarz type method and a parallel Kaczmarz type method for solving underdetermined systems of nonlinear equations. Some numerical experiences are presented.

[1]  H. Schwetlick Numerische Lösung nichtlinearer Gleichungen , 1978 .

[2]  J. M. Martínez,et al.  The method of successive orthogonal projections for solving nonlinear simultaneous equations , 1986 .

[3]  Lúcio T. Santos,et al.  A parallel subgradient projections method for the convex feasibility problem , 1987 .

[4]  J. Dennis,et al.  Direct secant updates of matrix factorizations , 1982 .

[5]  Lenhart K. Schubert Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian , 1970 .

[6]  K. Meyn Solution of underdetermined nonlinear equations by stationary iteration methods , 1983 .

[7]  Y. Censor Finite series-expansion reconstruction methods , 1983, Proceedings of the IEEE.

[8]  José Mario Martínez,et al.  Solving nonlinear simultaneous equations with a generalization of Brent's method , 1980 .

[9]  John E. Dennis,et al.  On the Local and Superlinear Convergence of Quasi-Newton Methods , 1973 .

[10]  Stanley C. Eisenstat,et al.  The application of sparse matrix methods to the numerical solution of nonlinear elliptic partial differential equations , 1974 .

[11]  A. Lent,et al.  Iterative algorithms for large partitioned linear systems, with applications to image reconstruction , 1981 .

[12]  A. H. Sherman On Newton-Iterative Methods for the Solution of Systems of Nonlinear Equations , 1978 .

[13]  Y. Censor Row-Action Methods for Huge and Sparse Systems and Their Applications , 1981 .

[14]  José Mario Martínez,et al.  Generalization of the Methods of Brent and Brown for Solving Nonlinear Simultaneous Equations , 1979 .

[15]  B. E. Oppenheim,et al.  Reconstruction tomography from incomplete projections , 1975 .

[16]  Y. Censor,et al.  A New Approach to the Emission Computerized Tomography Problem: Simultaneous Calculation of Attenuation and Activity Coefficients , 1979, IEEE Transactions on Nuclear Science.

[17]  J. Daniel,et al.  A conjugate gradient approach to nonlinear elliptic boundary value problems in irregular regions , 1974 .

[18]  Andrew Harry Sherman,et al.  On the efficient solution of sparse systems of linear and nonlinear equations. , 1975 .