Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties

We introduce a new family of symmetric functions, which are q analogs of products of Schur functions, defined in terms of ribbon tableaux. These functions can be interpreted in terms of the Fock space representation Fq of Uq(sln), and are related to Hall–Littlewood functions via the geometry of flag varieties. We present a series of conjectures, and prove them in special cases. The essential step in proving that these functions are actually symmetric consists in the calculation of a basis of highest weight vectors of Fq using ribbon tableaux.

[1]  M. Jimbo,et al.  Paths, Maya Diagrams and representations of $\widehat{\mathfrak{sl}}(r, \mathrm{C})$ , 1989 .

[2]  Dennis E. White,et al.  A Schensted Algorithm for Rim Hook Tableaux , 1985, J. Comb. Theory, Ser. A.

[3]  N. Shimomura A theorem on the fixed point set of a unipotent transformation on the flag manifold , 1980 .

[4]  Alain Lascoux,et al.  Euler-Poincare Characteristic and Polynomial Representations of Iwahori-Hecke Algebras , 1995 .

[5]  K. C. Misra,et al.  Crystal base for the basic representation of Uq(sl(n)) , 1990 .

[6]  G. B. Robinson,et al.  Representation theory of the symmetric group , 1961 .

[7]  Alain Lascoux,et al.  Hecke algebras at roots of unity and crystal bases of quantum affine algebras , 1996 .

[8]  H S Vandiver,et al.  A VON STERNECK ARITHMETICAL FUNCTION AND RESTRICTED PARTITIONS WITH RESPECT TO A MODULUS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Bernard Leclerc,et al.  Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts , 1995 .

[10]  J. A. Green,et al.  The characters of the finite general linear groups , 1955 .

[11]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[12]  A. Kirillov On the Kostka-Green-Foulkes polynomials and Clebsch-Gordan numbers , 1988 .

[13]  Michio Jimbo,et al.  Paths, Maya Diagrams and representations of ŝl (r, C) , 1989 .

[14]  A. Lascoux,et al.  Fonctions de Hall-Littlewood et polynômes de Kostka-Foulkes aux racines de l'unité , 1993 .

[15]  A. Morris,et al.  ON AN ALGEBRA OF SYMMETRIC FUNCTIONS , 1965 .

[16]  Masaki Kashiwara,et al.  Decomposition ofq-deformed Fock spaces , 1995 .

[17]  A. Morris,et al.  Hall–Littlewood polynomials at roots of 1 and modular representations of the symmetric group , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  A. C. Aitken,et al.  Modular representations of symmetric groups , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[20]  A. N. Kirillov,et al.  SERIES GENERATRICES POUR LES TABLEAUX DE DOMINOS , 1994 .

[21]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[22]  D. E. Littlewood,et al.  On Certain Symmetric Functions , 1961 .

[23]  Eugene Stern Semi-Infinite Wedges and Vertex Operators , 1995 .

[24]  R. Hotta,et al.  The fixed point subvarieties of unipotent transformations on generalized flag varieties and the green functions , 1979 .

[25]  Anatol N. Kirillov,et al.  The Bethe Ansatz and the combinatorics of Young tableaux , 1988 .

[26]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[27]  G. Lusztig Green polynomials and singularities of unipotent classes , 1981 .

[28]  Alain Lascoux,et al.  Green Polynomials and Hall-Littlewood Functions at Roots of Unity , 1994, Eur. J. Comb..

[29]  P. Pragacz,et al.  Formulas for Lagrangian and orthogonal degeneracy loci; the Q-polynomials approach , 1996, alg-geom/9602019.

[30]  Tetsuji Miwa,et al.  Crystal base for the basic representation of $$U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))$$ , 1990 .

[31]  Tetsuji Miwa,et al.  Crystal base for the basic representation of , 1990 .

[32]  Kostka polynomials and energy functions in solvable lattice models , 1995, q-alg/9512027.

[33]  Carol Bult,et al.  PERMUTATIONS , 1994 .

[34]  Dan Barbasch,et al.  Primitive ideals and orbital integrals in complex classical groups , 1982 .

[35]  Symmetric polynomials and divided differences in formulas of intersection theory , 1996, alg-geom/9605014.

[36]  A. Lascoux,et al.  Polynômes de Kostka-Foulkes et graphes cristallins des groups quantiques de type An , 1995 .

[37]  Takahiro Hayashi,et al.  Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras , 1990 .

[38]  J. Thibon,et al.  Hall-Littlewood functions and Kostka-Foulkes polynomials in representation theory. , 1994 .

[39]  T. A. Springer,et al.  A specialization theorem for certain Weyl group representations and an application to the green polynomials of unitary groups , 1977 .

[40]  S. Ramanan,et al.  Proceedings of the Hyderabad Conference on algebraic groups , 1991 .