On the Representation of Visual Information

Loss of information in images undergoing fine-to-coarse image transformations is analized by using an approach based on the theory of irreversible transformations. It is shown that entropy variation along scales can be used to characterize basic, low-level information and to gauge essential perceptual components of the image, such as shape and texture. The use of isotropic and anisotropic fine-to-coarse transformations of grey level images is discussed, and an extension of the approach to multi-valued images is proposed, where cross-interactions between the different colour channels are allowed.

[1]  L. Brillouin,et al.  Science and information theory , 1956 .

[2]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[3]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[5]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[6]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[7]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[8]  Giuseppe Boccignone,et al.  An information-theoretic approach to interactions in images. , 1999, Spatial vision.

[9]  Terry Caelli,et al.  On the Representation of Image Structures via Scale Space Entropy Conditions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Terry Caelli,et al.  Encoding Visual Information Using Anisotropic Transformations , 2001, IEEE Trans. Pattern Anal. Mach. Intell..