High-Brightness Plasmon-Enhanced Nanostructured Gold Photoemitter

Plasmonic nanohole arrays are fabricated in gold thin films by focused ion beam (FIB) lithography. Subsequent heat treatment creates sub 100 nm nanometric structures including tips, rods and flakes, all localized in the nanohole array region. The combined nanohole array and nanostructured surface comprise an efficient photoemitter. High brightness photoemission is observed from this construct using photoemission electron microscopy (PEEM), following 780 nm femtosecond (fs) laser irradiation. By comparing our observables to results of finite difference time domain (FDTD) calculations, we demonstrate that photoemission from the sub-100 nm structures is enhanced in the region of propagating surface plasmons launched from the nanohole arrays. Additionally, by tuning hole diameter and separation in the nanohole array, the photoemission intensity of nanostructured photoemitters can be controlled. We observe a photoemission enhancement of over 108, relative to photoemission from the flat region of the gold substrate at laser intensities well below the ablation threshold.

[1]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[2]  Lee A. DuBridge,et al.  Theory of the energy distribution of photoelectrons , 1933 .

[3]  Gang Xiong,et al.  Materials applications of photoelectron emission microscopy , 2010 .

[4]  Jens Gobrecht,et al.  Ultrafast electron emission from metallic nanotip arrays induced by near infrared femtosecond laser pulses , 2008 .

[5]  Atsushi Kubo,et al.  Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. , 2007, Nano letters.

[6]  Howard A. Padmore,et al.  Photoemission electron microscope for the study of magnetic materials , 1999 .

[7]  S. J. Peppernick,et al.  Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources. , 2013, Physical review letters.

[8]  R. Fowler,et al.  The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures , 1931 .

[9]  G. Schönhense,et al.  Field emission of electrons generated by the near field of strongly coupled plasmons. , 2012, Physical review letters.

[10]  P. Berini Long-range surface plasmon polaritons , 2009 .

[11]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[12]  H. Padmore,et al.  Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode. , 2013, Physical review letters.

[13]  L Cultrera,et al.  Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector. , 2010, Physical review letters.

[14]  R. Ganter,et al.  Laser-photofield emission from needle cathodes for low-emittance electron beams. , 2008, Physical review letters.

[15]  D. F. Ogletree,et al.  Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography. , 2013, Nano letters.

[16]  Yu Gong,et al.  Interferometric Plasmonic Lensing with Nanohole Arrays. , 2014, The journal of physical chemistry letters.

[17]  Yong Wang,et al.  Remote multi-color excitation using femtosecond propagating surface plasmon polaritons in gold films. , 2011, Optics express.

[18]  Ryszard S. Romaniuk,et al.  Operation of a free-electron laser from the extreme ultraviolet to the water window , 2007 .

[19]  Howard A. Padmore,et al.  Cathode R&D for future light sources , 2010 .

[20]  U. Welp,et al.  Surface plasmons at single nanoholes in Au films , 2004 .

[21]  Atsushi Kubo,et al.  Femtosecond microscopy of localized and propagating surface plasmons in silver gratings , 2007 .

[22]  Melinda Piket-May,et al.  9 – Computational Electromagnetics: The Finite-Difference Time-Domain Method , 2005 .

[23]  D E Moncton,et al.  Intense superradiant x rays from a compact source using a nanocathode array and emittance exchange. , 2012, Physical review letters.

[24]  C. Ropers,et al.  Tip-enhanced strong-field photoemission. , 2010, Physical review letters.

[25]  Zhirong Huang,et al.  Free electron lasers: Present status and future challenges , 2010 .

[26]  Q-Han Park,et al.  Coupling of surface plasmon polaritons and light in metallic nanoslits. , 2005, Physical review letters.

[27]  E. M. Logothetis,et al.  Laser-Induced Electron Emission from Solids: Many-Photon Photoelectric Effects and Thermionic Emission , 1969 .

[28]  K. Fung,et al.  Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography , 2009 .

[29]  S. J. Peppernick,et al.  Near-field focused photoemission from polystyrene microspheres studied with photoemission electron microscopy. , 2012, The Journal of chemical physics.

[30]  P. Hommelhoff,et al.  Strong-field above-threshold photoemission from sharp metal tips , 2010, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[31]  J. Rosenzweig,et al.  Experimental generation and characterization of uniformly filled ellipsoidal electron-beam distributions. , 2008, Physical review letters.

[32]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[33]  Alexei A. Maradudin,et al.  Surface-plasmon polariton scattering from a finite array of nanogrooves∕ridges: Efficient mirrors , 2005 .

[34]  Ulrich Hohenester,et al.  Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[35]  D. Nesbitt,et al.  Multiphoton Scanning Photoionization Imaging Microscopy for Single-Particle Studies of Plasmonic Metal Nanostructures , 2011 .

[36]  L. Torrisi,et al.  Metallic etching by high power Nd:yttrium–aluminum–garnet pulsed laser irradiation , 2000 .

[37]  Wayne P. Hess,et al.  Nonlinear Photoemission Electron Micrographs of Plasmonic Nanoholes in Gold Thin Films , 2014 .

[38]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.