LTR retroelements in the genome of Daphnia pulex

[1]  Hiroki Saito,et al.  Unexpected consequences of a sudden and massive transposon amplification on rice gene expression , 2009, Nature.

[2]  Haixu Tang,et al.  MGEScan-non-LTR: computational identification and classification of autonomous non-LTR retrotransposons in eukaryotic genomes , 2009, Nucleic acids research.

[3]  Keith R. Oliver,et al.  Transposable elements: powerful facilitators of evolution , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[4]  J. Bennetzen,et al.  Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome. , 2009, Genome research.

[5]  Teresa J. Crease,et al.  The Association Between Breeding System and Transposable Element Dynamics in Daphnia Pulex , 2008, Journal of Molecular Evolution.

[6]  C. Feschotte Transposable elements and the evolution of regulatory networks , 2008, Nature Reviews Genetics.

[7]  Casey M. Bergman,et al.  Discovering and detecting transposable elements in genome sequences , 2007, Briefings Bioinform..

[8]  M. Aguadé,et al.  The Dynamics of the roo Transposable Element In Mutation-Accumulation Lines and Segregating Populations of Drosophila melanogaster , 2007, Genetics.

[9]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[10]  Beat Keller,et al.  Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. , 2007, Genome research.

[11]  M. Lynch,et al.  De novo identification of LTR retrotransposons in eukaryotic genomes , 2007, BMC Genomics.

[12]  B. Charlesworth,et al.  The Fate of Transposable Elements in Asexual Populations , 2006, Genetics.

[13]  S. Jackson,et al.  Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. , 2006, Genome research.

[14]  Ruggiero Caizzi,et al.  A genome-wide screening of BEL-Pao like retrotransposons in Anopheles gambiae by the LTR_STRUC program. , 2005, Gene.

[15]  L. Jun,et al.  Survey of long terminal repeat retrotransposons of domesticated silkworm (Bombyx mori). , 2005, Insect biochemistry and molecular biology.

[16]  Casey M. Bergman,et al.  Combined Evidence Annotation of Transposable Elements in Genome Sequences , 2005, PLoS Comput. Biol..

[17]  J. Costas,et al.  Structural and evolutionary analyses of the Ty3/gypsy group of LTR retrotransposons in the genome of Anopheles gambiae. , 2005, Molecular biology and evolution.

[18]  R. Beeman,et al.  DIRS retroelements in arthropods: identification of the recently active TcDirs1 element in the red flour beetle Tribolium castaneum , 2004, Molecular Genetics and Genomics.

[19]  M. Grandbastien,et al.  The promoter of the Tnt1A retrotransposon is activated by ozone air pollution in tomato, but not in its natural host tobacco , 2003 .

[20]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[21]  John F. McDonald,et al.  LTR_STRUC: a novel search and identification program for LTR retrotransposons , 2003, Bioinform..

[22]  D. Petrov,et al.  Transposable elements in clonal lineages: lethal hangover from sex , 2003 .

[23]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[24]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[25]  I. Holmes Transcendent elements: whole-genome transposon screens and open evolutionary questions. , 2002, Genome Research.

[26]  R. H.J.MULLE THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE , 2002 .

[27]  J. McDonald,et al.  Long terminal repeat retrotransposons of Oryza sativa , 2002, Genome Biology.

[28]  R. Poulter,et al.  The DIRS1 group of retrotransposons. , 2001, Molecular biology and evolution.

[29]  B. Charlesworth,et al.  Rates of movement and distribution of transposable elements in Drosophila melanogaster: in situ hybridization vs Southern blotting data. , 2001, Genetical research.

[30]  N. Bowen,et al.  Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. , 2001, Genome research.

[31]  T. Crease,et al.  The Behavior of a Daphnia pulex Transposable Element in Cyclically and Obligately Parthenogenetic Populations , 2001, Journal of Molecular Evolution.

[32]  T. Eickbush,et al.  Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. , 2001, Genome research.

[33]  D. Finnegan,et al.  Genome evolution: Sex and the transposable element , 2001, Current Biology.

[34]  H. Abe,et al.  Two novel Pao-like retrotransposons (Kamikaze and Yamato) from the silkworm species Bombyx mori and B. mandarina: common structural features of Pao-like elements , 2001, Molecular Genetics and Genomics.

[35]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[36]  R. Poulter,et al.  New BEL-like LTR-retrotransposons in Fugu rubripes, Caenorhabditis elegans, and Drosophila melanogaster. , 2001, Gene.

[37]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[38]  M. Meselson,et al.  Transposable elements in sexual and ancient asexual taxa. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Lewin,et al.  Systematic screening of Anopheles mosquito genomes yields evidence for a major clade of Pao‐like retrotransposons , 2000, Insect molecular biology.

[40]  T. Eickbush,et al.  NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans. , 2000, Genetics.

[41]  M. Van Montagu,et al.  Transposon Display identifies individual transposable elements in high copy number lines. , 2002, The Plant journal : for cell and molecular biology.

[42]  M. Grandbastien Activation of plant retrotransposons under stress conditions , 1998 .

[43]  M. G. Kidwell,et al.  Transposable elements as sources of variation in animals and plants. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[45]  M. Lynch,et al.  The mutational meltdown in asexual populations. , 1993, The Journal of heredity.

[46]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .