LTR retroelements in the genome of Daphnia pulex
暂无分享,去创建一个
Haixu Tang | Mina Rho | Michael Lynch | M. Lynch | Haixu Tang | Mina Rho | Sun Kim | Xiang Gao | S. Schaack | Sun Kim | Xiang Gao | Sarah Schaack
[1] Hiroki Saito,et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression , 2009, Nature.
[2] Haixu Tang,et al. MGEScan-non-LTR: computational identification and classification of autonomous non-LTR retrotransposons in eukaryotic genomes , 2009, Nucleic acids research.
[3] Keith R. Oliver,et al. Transposable elements: powerful facilitators of evolution , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.
[4] J. Bennetzen,et al. Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome. , 2009, Genome research.
[5] Teresa J. Crease,et al. The Association Between Breeding System and Transposable Element Dynamics in Daphnia Pulex , 2008, Journal of Molecular Evolution.
[6] C. Feschotte. Transposable elements and the evolution of regulatory networks , 2008, Nature Reviews Genetics.
[7] Casey M. Bergman,et al. Discovering and detecting transposable elements in genome sequences , 2007, Briefings Bioinform..
[8] M. Aguadé,et al. The Dynamics of the roo Transposable Element In Mutation-Accumulation Lines and Segregating Populations of Drosophila melanogaster , 2007, Genetics.
[9] M. Nei,et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.
[10] Beat Keller,et al. Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. , 2007, Genome research.
[11] M. Lynch,et al. De novo identification of LTR retrotransposons in eukaryotic genomes , 2007, BMC Genomics.
[12] B. Charlesworth,et al. The Fate of Transposable Elements in Asexual Populations , 2006, Genetics.
[13] S. Jackson,et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. , 2006, Genome research.
[14] Ruggiero Caizzi,et al. A genome-wide screening of BEL-Pao like retrotransposons in Anopheles gambiae by the LTR_STRUC program. , 2005, Gene.
[15] L. Jun,et al. Survey of long terminal repeat retrotransposons of domesticated silkworm (Bombyx mori). , 2005, Insect biochemistry and molecular biology.
[16] Casey M. Bergman,et al. Combined Evidence Annotation of Transposable Elements in Genome Sequences , 2005, PLoS Comput. Biol..
[17] J. Costas,et al. Structural and evolutionary analyses of the Ty3/gypsy group of LTR retrotransposons in the genome of Anopheles gambiae. , 2005, Molecular biology and evolution.
[18] R. Beeman,et al. DIRS retroelements in arthropods: identification of the recently active TcDirs1 element in the red flour beetle Tribolium castaneum , 2004, Molecular Genetics and Genomics.
[19] M. Grandbastien,et al. The promoter of the Tnt1A retrotransposon is activated by ozone air pollution in tomato, but not in its natural host tobacco , 2003 .
[20] Rodrigo Lopez,et al. Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..
[21] John F. McDonald,et al. LTR_STRUC: a novel search and identification program for LTR retrotransposons , 2003, Bioinform..
[22] D. Petrov,et al. Transposable elements in clonal lineages: lethal hangover from sex , 2003 .
[23] M. Ashburner,et al. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.
[24] Paramvir S. Dehal,et al. Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.
[25] I. Holmes. Transcendent elements: whole-genome transposon screens and open evolutionary questions. , 2002, Genome Research.
[26] R. H.J.MULLE. THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE , 2002 .
[27] J. McDonald,et al. Long terminal repeat retrotransposons of Oryza sativa , 2002, Genome Biology.
[28] R. Poulter,et al. The DIRS1 group of retrotransposons. , 2001, Molecular biology and evolution.
[29] B. Charlesworth,et al. Rates of movement and distribution of transposable elements in Drosophila melanogaster: in situ hybridization vs Southern blotting data. , 2001, Genetical research.
[30] N. Bowen,et al. Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. , 2001, Genome research.
[31] T. Crease,et al. The Behavior of a Daphnia pulex Transposable Element in Cyclically and Obligately Parthenogenetic Populations , 2001, Journal of Molecular Evolution.
[32] T. Eickbush,et al. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. , 2001, Genome research.
[33] D. Finnegan,et al. Genome evolution: Sex and the transposable element , 2001, Current Biology.
[34] H. Abe,et al. Two novel Pao-like retrotransposons (Kamikaze and Yamato) from the silkworm species Bombyx mori and B. mandarina: common structural features of Pao-like elements , 2001, Molecular Genetics and Genomics.
[35] J. V. Moran,et al. Initial sequencing and analysis of the human genome. , 2001, Nature.
[36] R. Poulter,et al. New BEL-like LTR-retrotransposons in Fugu rubripes, Caenorhabditis elegans, and Drosophila melanogaster. , 2001, Gene.
[37] International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome , 2001, Nature.
[38] M. Meselson,et al. Transposable elements in sexual and ancient asexual taxa. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[39] A. Lewin,et al. Systematic screening of Anopheles mosquito genomes yields evidence for a major clade of Pao‐like retrotransposons , 2000, Insect molecular biology.
[40] T. Eickbush,et al. NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans. , 2000, Genetics.
[41] M. Van Montagu,et al. Transposon Display identifies individual transposable elements in high copy number lines. , 2002, The Plant journal : for cell and molecular biology.
[42] M. Grandbastien. Activation of plant retrotransposons under stress conditions , 1998 .
[43] M. G. Kidwell,et al. Transposable elements as sources of variation in animals and plants. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[44] J. Bennetzen,et al. Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.
[45] M. Lynch,et al. The mutational meltdown in asexual populations. , 1993, The Journal of heredity.
[46] E. Pahlich,et al. A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .